1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
|
/*
**
** Add gaussian, multiplicative gaussian, impulse, laplacian or
** poisson noise to a portable anymap.
**
** Version 1.0 November 1995
**
** Copyright (C) 1995 by Mike Burns (burns@cac.psu.edu)
**
** Adapted to Netpbm 2005.08.09, by Bryan Henderson
**
** Permission to use, copy, modify, and distribute this software and its
** documentation for any purpose and without fee is hereby granted, provided
** that the above copyright notice appear in all copies and that both that
** copyright notice and this permission notice appear in supporting
** documentation. This software is provided "as is" without express or
** implied warranty.
*/
/* References
** ----------
** "Adaptive Image Restoration in Signal-Dependent Noise" by R. Kasturi
** Institute for Electronic Science, Texas Tech University 1982
**
** "Digital Image Processing Algorithms" by Ioannis Pitas
** Prentice Hall, 1993 ISBN 0-13-145814-0
*/
#define _XOPEN_SOURCE /* get M_PI in math.h */
#include <math.h>
#include "pm_c_util.h"
#include "pam.h"
#define RANDOM_MASK 0x7FFF /* only compare lower 15 bits. Stupid PCs. */
static double const EPSILON = 1.0e-5;
static double const arand = 32767.0; /* 2^15-1 in case stoopid computer */
enum noiseType {
GAUSSIAN,
IMPULSE, /* aka salt and pepper noise */
LAPLACIAN,
MULTIPLICATIVE_GAUSSIAN,
POISSON,
MAX_NOISE_TYPES
};
static void
gaussian_noise(sample const maxval,
sample const origSample,
sample * const newSampleP,
float const sigma1,
float const sigma2) {
/*----------------------------------------------------------------------------
Add Gaussian noise.
Based on Kasturi/Algorithms of the ACM
-----------------------------------------------------------------------------*/
double x1, x2, xn, yn;
double rawNewSample;
x1 = (rand() & RANDOM_MASK) / arand;
if (x1 == 0.0)
x1 = 1.0;
x2 = (rand() & RANDOM_MASK) / arand;
xn = sqrt(-2.0 * log(x1)) * cos(2.0 * M_PI * x2);
yn = sqrt(-2.0 * log(x1)) * sin(2.0 * M_PI * x2);
rawNewSample =
origSample + (sqrt((double) origSample) * sigma1 * xn) + (sigma2 * yn);
*newSampleP = MAX(MIN((int)rawNewSample, maxval), 0);
}
static void
impulse_noise(sample const maxval,
sample const origSample,
sample * const newSampleP,
float const tolerance) {
/*----------------------------------------------------------------------------
Add impulse (salt and pepper) noise
-----------------------------------------------------------------------------*/
double const low_tol = tolerance / 2.0;
double const high_tol = 1.0 - (tolerance / 2.0);
double const sap = (rand() & RANDOM_MASK) / arand;
if (sap < low_tol)
*newSampleP = 0;
else if ( sap >= high_tol )
*newSampleP = maxval;
}
static void
laplacian_noise(sample const maxval,
double const infinity,
sample const origSample,
sample * const newSampleP,
float const lsigma) {
/*----------------------------------------------------------------------------
Add Laplacian noise
From Pitas' book.
-----------------------------------------------------------------------------*/
double const u = (rand() & RANDOM_MASK) / arand;
double rawNewSample;
if (u <= 0.5) {
if (u <= EPSILON)
rawNewSample = origSample - infinity;
else
rawNewSample = origSample + lsigma * log(2.0 * u);
} else {
double const u1 = 1.0 - u;
if (u1 <= 0.5 * EPSILON)
rawNewSample = origSample + infinity;
else
rawNewSample = origSample - lsigma * log(2.0 * u1);
}
*newSampleP = MIN(MAX((int)rawNewSample, 0), maxval);
}
static void
multiplicative_gaussian_noise(sample const maxval,
double const infinity,
sample const origSample,
sample * const newSampleP,
float const mgsigma) {
/*----------------------------------------------------------------------------
Add multiplicative Gaussian noise
From Pitas' book.
-----------------------------------------------------------------------------*/
double rayleigh, gauss;
double rawNewSample;
{
double const uniform = (rand() & RANDOM_MASK) / arand;
if (uniform <= EPSILON)
rayleigh = infinity;
else
rayleigh = sqrt(-2.0 * log( uniform));
}
{
double const uniform = (rand() & RANDOM_MASK) / arand;
gauss = rayleigh * cos(2.0 * M_PI * uniform);
}
rawNewSample = origSample + (origSample * mgsigma * gauss);
*newSampleP = MIN(MAX((int)rawNewSample, 0), maxval);
}
static void
poisson_noise(sample const maxval,
sample const origSample,
sample * const newSampleP,
float const lambda) {
/*----------------------------------------------------------------------------
Add Poisson noise
-----------------------------------------------------------------------------*/
double const x = lambda * origSample;
double const x1 = exp(-x);
double rawNewSample;
float rr;
unsigned int k;
rr = 1.0; /* initial value */
k = 0; /* initial value */
rr = rr * ((rand() & RANDOM_MASK) / arand);
while (rr > x1) {
++k;
rr = rr * ((rand() & RANDOM_MASK) / arand);
}
rawNewSample = k / lambda;
*newSampleP = MIN(MAX((int)rawNewSample, 0), maxval);
}
int
main(int argc, char * argv[]) {
FILE * ifP;
struct pam inpam;
struct pam outpam;
tuple * tuplerow;
const tuple * newtuplerow;
unsigned int row;
double infinity;
int argn;
const char * inputFilename;
int noise_type;
unsigned int seed;
int i;
const char * const usage = "[-type noise_type] [-lsigma x] [-mgsigma x] "
"[-sigma1 x] [-sigma2 x] [-lambda x] [-seed n] "
"[-tolerance ratio] [pgmfile]";
const char * const noise_name[] = {
"gaussian",
"impulse",
"laplacian",
"multiplicative_gaussian",
"poisson"
};
int const noise_id[] = {
GAUSSIAN,
IMPULSE,
LAPLACIAN,
MULTIPLICATIVE_GAUSSIAN,
POISSON
};
/* minimum number of characters to match noise name for pm_keymatch() */
int const noise_compare[] = {
1,
1,
1,
1,
1
};
/* define default values for configurable options */
float lambda = 0.05;
float lsigma = 10.0;
float mgsigma = 0.5;
float sigma1 = 4.0;
float sigma2 = 20.0;
float tolerance = 0.10;
pnm_init(&argc, argv);
seed = pm_randseed();
noise_type = GAUSSIAN;
argn = 1;
while ( argn < argc && argv[argn][0] == '-' && argv[argn][1] != '\0' )
{
if ( pm_keymatch( argv[argn], "-lambda", 3 ) )
{
++argn;
if ( argn >= argc )
{
pm_message(
"incorrect number of arguments for -lambda option" );
pm_usage( usage );
}
else if ( argv[argn][0] == '-' )
{
pm_message( "invalid argument to -lambda option: %s",
argv[argn] );
pm_usage( usage );
}
lambda = atof( argv[argn] );
}
else if ( pm_keymatch( argv[argn], "-lsigma", 3 ) )
{
++argn;
if ( argn >= argc )
{
pm_message(
"incorrect number of arguments for -lsigma option" );
pm_usage( usage );
}
else if ( argv[argn][0] == '-' )
{
pm_message( "invalid argument to -lsigma option: %s",
argv[argn] );
pm_usage( usage );
}
lsigma = atof( argv[argn] );
}
else if ( pm_keymatch( argv[argn], "-mgsigma", 2 ) )
{
++argn;
if ( argn >= argc )
{
pm_message(
"incorrect number of arguments for -mgsigma option" );
pm_usage( usage );
}
else if ( argv[argn][0] == '-' )
{
pm_message( "invalid argument to -mgsigma option: %s",
argv[argn] );
pm_usage( usage );
}
mgsigma = atof( argv[argn] );
}
else if ( pm_keymatch( argv[argn], "-seed", 3 ) )
{
++argn;
if ( argn >= argc )
{
pm_message( "incorrect number of arguments for -seed option" );
pm_usage( usage );
}
else if ( argv[argn][0] == '-' )
{
pm_message( "invalid argument to -seed option: %s",
argv[argn] );
pm_usage( usage );
}
seed = atoi(argv[argn]);
}
else if ( pm_keymatch( argv[argn], "-sigma1", 7 ) ||
pm_keymatch( argv[argn], "-s1", 3 ) )
{
++argn;
if ( argn >= argc )
{
pm_message(
"incorrect number of arguments for -sigma1 option" );
pm_usage( usage );
}
else if ( argv[argn][0] == '-' )
{
pm_message( "invalid argument to -sigma1 option: %s",
argv[argn] );
pm_usage( usage );
}
sigma1 = atof( argv[argn] );
}
else if ( pm_keymatch( argv[argn], "-sigma2", 7 ) ||
pm_keymatch( argv[argn], "-s2", 3 ) )
{
++argn;
if ( argn >= argc )
{
pm_message(
"incorrect number of arguments for -sigma2 option" );
pm_usage( usage );
}
else if ( argv[argn][0] == '-' )
{
pm_message( "invalid argument to -sigma2 option: %s",
argv[argn] );
pm_usage( usage );
}
sigma2 = atof( argv[argn] );
}
else if ( pm_keymatch( argv[argn], "-tolerance", 3 ) )
{
++argn;
if ( argn >= argc )
{
pm_message(
"incorrect number of arguments for -tolerance option" );
pm_usage( usage );
}
else if ( argv[argn][0] == '-' )
{
pm_message( "invalid argument to -tolerance option: %s",
argv[argn] );
pm_usage( usage );
}
tolerance = atof( argv[argn] );
}
else if ( pm_keymatch( argv[argn], "-type", 3 ) )
{
++argn;
if ( argn >= argc )
{
pm_message( "incorrect number of arguments for -type option" );
pm_usage( usage );
}
else if ( argv[argn][0] == '-' )
{
pm_message( "invalid argument to -type option: %s",
argv[argn] );
pm_usage( usage );
}
/* search through list of valid noise types and compare */
i = 0;
while ( ( i < MAX_NOISE_TYPES ) &&
!pm_keymatch( argv[argn],
noise_name[i], noise_compare[i] ) )
++i;
if ( i >= MAX_NOISE_TYPES )
{
pm_message( "invalid argument to -type option: %s",
argv[argn] );
pm_usage( usage );
}
noise_type = noise_id[i];
}
else
pm_usage( usage );
++argn;
}
if ( argn < argc )
{
inputFilename = argv[argn];
argn++;
}
else
inputFilename = "-";
if ( argn != argc )
pm_usage( usage );
srand(seed);
ifP = pm_openr(inputFilename);
pnm_readpaminit(ifP, &inpam, PAM_STRUCT_SIZE(tuple_type));
outpam = inpam;
outpam.file = stdout;
pnm_writepaminit(&outpam);
tuplerow = pnm_allocpamrow(&inpam);
newtuplerow = pnm_allocpamrow(&inpam);
infinity = (double) inpam.maxval;
for (row = 0; row < inpam.height; ++row) {
unsigned int col;
pnm_readpamrow(&inpam, tuplerow);
for (col = 0; col < inpam.width; ++col) {
unsigned int plane;
for (plane = 0; plane < inpam.depth; ++plane) {
switch (noise_type) {
case GAUSSIAN:
gaussian_noise(inpam.maxval,
tuplerow[col][plane],
&newtuplerow[col][plane],
sigma1, sigma2);
break;
case IMPULSE:
impulse_noise(inpam.maxval,
tuplerow[col][plane],
&newtuplerow[col][plane],
tolerance);
break;
case LAPLACIAN:
laplacian_noise(inpam.maxval, infinity,
tuplerow[col][plane],
&newtuplerow[col][plane],
lsigma);
break;
case MULTIPLICATIVE_GAUSSIAN:
multiplicative_gaussian_noise(inpam.maxval, infinity,
tuplerow[col][plane],
&newtuplerow[col][plane],
mgsigma);
break;
case POISSON:
poisson_noise(inpam.maxval,
tuplerow[col][plane],
&newtuplerow[col][plane],
lambda);
break;
}
}
}
pnm_writepamrow(&outpam, newtuplerow);
}
pnm_freepamrow(newtuplerow);
pnm_freepamrow(tuplerow);
return 0;
}
|