1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
|
/*===========================================================================*
* rgbtoycc.c *
* *
* Procedures to convert from RGB space to YUV space *
* *
* EXPORTED PROCEDURES: *
* PNMtoYUV *
* PPMtoYUV *
* *
*===========================================================================*/
/*
* Copyright (c) 1995 The Regents of the University of California.
* All rights reserved.
*
* Permission to use, copy, modify, and distribute this software and its
* documentation for any purpose, without fee, and without written agreement is
* hereby granted, provided that the above copyright notice and the following
* two paragraphs appear in all copies of this software.
*
* IN NO EVENT SHALL THE UNIVERSITY OF CALIFORNIA BE LIABLE TO ANY PARTY FOR
* DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT
* OF THE USE OF THIS SOFTWARE AND ITS DOCUMENTATION, EVEN IF THE UNIVERSITY OF
* CALIFORNIA HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
* THE UNIVERSITY OF CALIFORNIA SPECIFICALLY DISCLAIMS ANY WARRANTIES,
* INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
* AND FITNESS FOR A PARTICULAR PURPOSE. THE SOFTWARE PROVIDED HEREUNDER IS
* ON AN "AS IS" BASIS, AND THE UNIVERSITY OF CALIFORNIA HAS NO OBLIGATION TO
* PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODIFICATIONS.
*/
/*==============*
* HEADER FILES *
*==============*/
#include "pnm.h"
#include "all.h"
#include "frame.h"
#include "rgbtoycc.h"
static float *mult299, *mult587, *mult114, *mult16874, *mult33126,
*mult5, *mult41869, *mult08131; /* malloc'ed */
/* These are tables we use for fast arithmetic */
static pixval table_maxval = 0;
/* The maxval used to compute the above arrays. Zero means
the above arrays don't exist yet
*/
static void
compute_mult_tables(const pixval maxval) {
/* For speed, we do the arithmetic with eight tables that reduce a
bunch of multiplications and divisions to a simple table lookup.
Because a large maxval could require a significant amount of
table space, we allocate the space dynamically.
If we had to compute the tables for every frame, it wouldn't be
fast at all, but since all the frames normally have the same
maxval, we only need to compute them once. But just in case,
we check each frame to see if it has a different maxval and
recompute the tables if so.
*/
if (table_maxval != maxval) {
/* We need to compute or re-compute the multiplication tables */
if (table_maxval != 0) {
free(mult299); free(mult587); free(mult114); free(mult16874);
free(mult33126); free(mult5); free(mult41869); free(mult08131);
}
table_maxval = maxval;
mult299 = malloc((table_maxval+1)*sizeof(float));
mult587 = malloc((table_maxval+1)*sizeof(float));
mult114 = malloc((table_maxval+1)*sizeof(float));
mult16874 = malloc((table_maxval+1)*sizeof(float));
mult33126 = malloc((table_maxval+1)*sizeof(float));
mult5 = malloc((table_maxval+1)*sizeof(float));
mult41869 = malloc((table_maxval+1)*sizeof(float));
mult08131 = malloc((table_maxval+1)*sizeof(float));
if (mult299 == NULL || mult587 == NULL || mult114 == NULL ||
mult16874 == NULL || mult33126 == NULL || mult5 == NULL ||
mult41869 == NULL || mult08131 == NULL)
pm_error("Unable to allocate storage for arithmetic tables. "
"We need %d bytes, which is the maxval of the input "
"image, plus 1, "
"times the storage size of a floating point value.",
(unsigned)(8 * (table_maxval+1)*sizeof(float)));
{
int index;
for (index = 0; index <= table_maxval; index++ ) {
mult299[index] = index*0.29900 * 255 / table_maxval;
mult587[index] = index*0.58700 * 255 / table_maxval;
mult114[index] = index*0.11400 * 255 / table_maxval;
mult16874[index] = -0.16874*index * 255 / table_maxval;
mult33126[index] = -0.33126*index * 255 / table_maxval;
mult5[index] = index*0.50000 * 255 / table_maxval;
mult41869[index] = -0.41869*index * 255 / table_maxval;
mult08131[index] = -0.08131*index * 255 / table_maxval;
}
}
}
}
/*=====================*
* EXPORTED PROCEDURES *
*=====================*/
void
PNMtoYUV(MpegFrame * const frameP,
xel ** const xels,
unsigned int const cols,
unsigned int const rows,
xelval const maxval) {
/*----------------------------------------------------------------------------
Set the raster of the MPEG frame *frameP from the libnetpbm input
'xels'. Note that the raster information in a MpegFrame is in YUV
form.
-----------------------------------------------------------------------------*/
int x, y;
uint8 *dy0, *dy1;
uint8 *dcr, *dcb;
pixel *src0, *src1;
compute_mult_tables(maxval); /* This sets up mult299[], etc. */
Frame_AllocYCC(frameP);
/*
* okay. Now, convert everything into YCbCr space. (the specific
* numbers come from the JPEG source, jccolor.c) The conversion
* equations to be implemented are therefore
*
* Y = 0.29900 * R + 0.58700 * G + 0.11400 * B
* Cb = -0.16874 * R - 0.33126 * G + 0.50000 * B
* Cr = 0.50000 * R - 0.41869 * G - 0.08131 * B
*
* With Y, Cb, and Cr then normalized to the range 0 - 255.
*/
for (y = 0; y < rows; y += 2) {
for (x = 0, src0 = xels[y], src1 = xels[y + 1],
dy0 = frameP->orig_y[y], dy1 = frameP->orig_y[y + 1],
dcr = frameP->orig_cr[y >> 1], dcb = frameP->orig_cb[y >> 1];
x < cols;
x += 2, dy0 += 2, dy1 += 2, dcr++,
dcb++, src0 += 2, src1 += 2) {
*dy0 = (mult299[PPM_GETR(*src0)] +
mult587[PPM_GETG(*src0)] +
mult114[PPM_GETB(*src0)]);
*dy1 = (mult299[PPM_GETR(*src1)] +
mult587[PPM_GETG(*src1)] +
mult114[PPM_GETB(*src1)]);
dy0[1] = (mult299[PPM_GETR(src0[1])] +
mult587[PPM_GETG(src0[1])] +
mult114[PPM_GETB(src0[1])]);
dy1[1] = (mult299[PPM_GETR(src1[1])] +
mult587[PPM_GETG(src1[1])] +
mult114[PPM_GETB(src1[1])]);
*dcb = ((mult16874[PPM_GETR(*src0)] +
mult33126[PPM_GETG(*src0)] +
mult5[PPM_GETB(*src0)] +
mult16874[PPM_GETR(*src1)] +
mult33126[PPM_GETG(*src1)] +
mult5[PPM_GETB(*src1)] +
mult16874[PPM_GETR(src0[1])] +
mult33126[PPM_GETG(src0[1])] +
mult5[PPM_GETB(src0[1])] +
mult16874[PPM_GETR(src1[1])] +
mult33126[PPM_GETG(src1[1])] +
mult5[PPM_GETB(src1[1])]) / 4) + 128;
*dcr = ((mult5[PPM_GETR(*src0)] +
mult41869[PPM_GETG(*src0)] +
mult08131[PPM_GETB(*src0)] +
mult5[PPM_GETR(*src1)] +
mult41869[PPM_GETG(*src1)] +
mult08131[PPM_GETB(*src1)] +
mult5[PPM_GETR(src0[1])] +
mult41869[PPM_GETG(src0[1])] +
mult08131[PPM_GETB(src0[1])] +
mult5[PPM_GETR(src1[1])] +
mult41869[PPM_GETG(src1[1])] +
mult08131[PPM_GETB(src1[1])]) / 4) + 128;
DBG_PRINT(("%3d,%3d: (%3d,%3d,%3d) --> (%3d,%3d,%3d)\n",
x, y,
PPM_GETR(*src0), PPM_GETG(*src0), PPM_GETB(*src0),
*dy0, *dcb, *dcr));
}
}
}
|