about summary refs log tree commit diff
path: root/converter/other/pamtosvg/spline.c
blob: 5bdf0c0e41882e580a8551360ebdf1835259062d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
/* spline.c: spline and spline list (represented as arrays) manipulation. */

#include <assert.h>

#include "mallocvar.h"

#include "message.h"
#include "point.h"
#include "spline.h"
#include "vector.h"

/* Print a spline in human-readable form.  */

void
print_spline (FILE *f, spline_type s)
{
  assert(SPLINE_DEGREE (s) == LINEARTYPE || SPLINE_DEGREE (s) == CUBICTYPE);

  if (SPLINE_DEGREE (s) == LINEARTYPE)
    fprintf (f, "(%.3f,%.3f)--(%.3f,%.3f).\n",
                START_POINT (s).x, START_POINT (s).y,
                END_POINT (s).x, END_POINT (s).y);

  else if (SPLINE_DEGREE (s) == CUBICTYPE)
    fprintf (f, "(%.3f,%.3f)..ctrls(%.3f,%.3f)&(%.3f,%.3f)..(%.3f,%.3f).\n",
                START_POINT (s).x, START_POINT (s).y,
                CONTROL1 (s).x, CONTROL1 (s).y,
                CONTROL2 (s).x, CONTROL2 (s).y,
                END_POINT (s).x, END_POINT (s).y);
}


/* Evaluate the spline S at a given T value.  This is an implementation
   of de Casteljau's algorithm.  See Schneider's thesis, p.37.
   The variable names are taken from there.  */

float_coord
evaluate_spline (spline_type s, float t)
{
  spline_type V[4];    /* We need degree+1 splines, but assert degree <= 3.  */
  signed i, j;
  float one_minus_t = (float) 1.0 - t;
  polynomial_degree degree = SPLINE_DEGREE (s);

  for (i = 0; i <= degree; i++)
    {
      V[0].v[i].x = s.v[i].x;
      V[0].v[i].y = s.v[i].y;
      V[0].v[i].z = s.v[i].z;
    }

  for (j = 1; j <= degree; j++)
    for (i = 0; i <= degree - j; i++)
      {
        float_coord t1 = Pmult_scalar (V[j - 1].v[i], one_minus_t);
        float_coord t2 = Pmult_scalar (V[j - 1].v[i + 1], t);
        float_coord temp = Padd (t1, t2);
        V[j].v[i].x = temp.x;
        V[j].v[i].y = temp.y;
        V[j].v[i].z = temp.z;
      }

  return V[degree].v[0];
}


/* Return a new, empty, spline list.  */

spline_list_type *
new_spline_list (void)
{
  spline_list_type *answer;

  MALLOCVAR(answer);
  *answer = empty_spline_list();
  return answer;
}

spline_list_type 
empty_spline_list (void)
{
  spline_list_type answer;
  SPLINE_LIST_DATA (answer) = NULL;
  SPLINE_LIST_LENGTH (answer) = 0;
  return answer;
}

/* Return a new spline list with SPLINE as the first element.  */

spline_list_type *
new_spline_list_with_spline (spline_type spline)
{
  spline_list_type *answer;

  answer = new_spline_list();
  MALLOCVAR(SPLINE_LIST_DATA(*answer));
  SPLINE_LIST_ELT (*answer, 0) = spline;
  SPLINE_LIST_LENGTH (*answer) = 1;

  return answer;
}


/* Free the storage in a spline list.  We don't have to free the
   elements, since they are arrays in automatic storage.  And we don't
   want to free the list if it was empty.  */

void
free_spline_list (spline_list_type spline_list)
{
  if (SPLINE_LIST_DATA (spline_list) != NULL)
    free (SPLINE_LIST_DATA (spline_list));
}


/* Append the spline S to the list SPLINE_LIST.  */

void
append_spline (spline_list_type *l, spline_type s)
{
  assert (l != NULL);

  SPLINE_LIST_LENGTH (*l)++;
  REALLOCARRAY(SPLINE_LIST_DATA(*l), SPLINE_LIST_LENGTH(*l));
  LAST_SPLINE_LIST_ELT (*l) = s;
}


/* Tack the elements in the list S2 onto the end of S1.
   S2 is not changed.  */

void
concat_spline_lists (spline_list_type *s1, spline_list_type s2)
{
  unsigned this_spline;
  unsigned new_length;

  assert (s1 != NULL);

  new_length = SPLINE_LIST_LENGTH (*s1) + SPLINE_LIST_LENGTH (s2);

  REALLOCARRAY_NOFAIL(SPLINE_LIST_DATA(*s1), new_length);

  for (this_spline = 0; this_spline < SPLINE_LIST_LENGTH (s2); this_spline++)
    SPLINE_LIST_ELT (*s1, SPLINE_LIST_LENGTH (*s1)++)
      = SPLINE_LIST_ELT (s2, this_spline);
}


/* Return a new, empty, spline list array.  */

spline_list_array_type
new_spline_list_array (void)
{
  spline_list_array_type answer;

  SPLINE_LIST_ARRAY_DATA (answer) = NULL;
  SPLINE_LIST_ARRAY_LENGTH (answer) = 0;

  return answer;
}


/* Free the storage in a spline list array.  We don't
   want to free the list if it is empty.  */
void
free_spline_list_array (spline_list_array_type *spline_list_array)
{
  unsigned this_list;

  for (this_list = 0;
       this_list < SPLINE_LIST_ARRAY_LENGTH (*spline_list_array);
       this_list++)
    free_spline_list (SPLINE_LIST_ARRAY_ELT (*spline_list_array, this_list));

  if (SPLINE_LIST_ARRAY_DATA (*spline_list_array) != NULL)
    free (SPLINE_LIST_ARRAY_DATA (*spline_list_array));

  flush_log_output ();
}


/* Append the spline S to the list SPLINE_LIST_ARRAY.  */

void
append_spline_list (spline_list_array_type *l, spline_list_type s)
{
  SPLINE_LIST_ARRAY_LENGTH (*l)++;
  REALLOCARRAY_NOFAIL(SPLINE_LIST_ARRAY_DATA(*l),
                      SPLINE_LIST_ARRAY_LENGTH(*l));
  LAST_SPLINE_LIST_ARRAY_ELT (*l) = s;
}