about summary refs log tree commit diff
path: root/converter/other/fiasco/codec/decoder.c
blob: 229996b6f9c49077d5f03fb967004a5cd9d7163e (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
/*
 *  decode.c:       Decoding of an image represented by a WFA
 *
 *  Written by:     Ullrich Hafner
 *          Michael Unger
 *
 *  This file is part of FIASCO (Fractal Image And Sequence COdec)
 *  Copyright (C) 1994-2000 Ullrich Hafner
 */

/*
 *  $Date: 2000/10/22 10:44:48 $
 *  $Author: hafner $
 *  $Revision: 5.3 $
 *  $State: Exp $
 */

#include "pm_config.h"
#include "config.h"

#include <string.h>

#include "pm_c_util.h"

#include "types.h"
#include "macros.h"
#include "error.h"

#include "wfa.h"
#include "image.h"
#include "misc.h"
#include "motion.h"
#include "read.h"
#include "wfalib.h"
#include "decoder.h"

/*****************************************************************************

                prototypes

*****************************************************************************/

static void
compute_state_images (unsigned frame_level, word_t **simg,
              const u_word_t *offset, const wfa_t *wfa);
static void
free_state_images (unsigned max_level, bool_t color, word_t **state_image,
           u_word_t *offset, const unsigned *root_state,
           unsigned range_state, format_e format, const wfa_t *wfa);
static void
alloc_state_images (word_t ***images, u_word_t **offsets, const image_t *frame,
            const unsigned *root_state, unsigned range_state,
            unsigned max_level, format_e format, const wfa_t *wfa);
static void
compute_actual_size (unsigned luminance_root,
             unsigned *width, unsigned *height, const wfa_t *wfa);
static void
enlarge_image (int enlarge_factor, format_e format, unsigned y_root,
           wfa_t *wfa);
static word_t *
duplicate_state_image (const word_t *domain, unsigned offset, unsigned level);

/*****************************************************************************

                public code

*****************************************************************************/

video_t *
alloc_video (bool_t store_wfa)
/*
 *  Video struct constructor:
 *  Initialize video structure and allocate memory for current, past
 *  and future WFA if flag 'store_wfa' is TRUE.
 *
 *  Return value:
 *  pointer to the new video structure
 */
{
   video_t *video = Calloc (1, sizeof (video_t));

   video->future_display = -1;
   video->display        = 0;

   video->future = video->sfuture = video->past
         = video->frame   = video->sframe = NULL;

   if (store_wfa)
   {
      video->wfa        = alloc_wfa (NO);
      video->wfa_past   = alloc_wfa (NO);
      video->wfa_future = alloc_wfa (NO);
   }
   else
      video->wfa = video->wfa_past = video->wfa_future = NULL;

   return video;
}

void
free_video (video_t *video)
/*
 *  Video struct destructor:
 *  Free memory of given 'video' struct.
 *
 *  No return value.
 *
 *  Side effects:
 *  'video' struct is discarded.
 */
{
   if (video->past)
      free_image (video->past);
   if (video->future)
      free_image (video->future);
   if (video->sfuture)
      free_image (video->sfuture);
   if (video->frame)
      free_image (video->frame);
   if (video->sframe)
      free_image (video->sframe);
   if (video->wfa)
      free_wfa (video->wfa);
   if (video->wfa_past)
      free_wfa (video->wfa_past);
   if (video->wfa_future)
      free_wfa (video->wfa_future);

   Free (video);
}

image_t *
get_next_frame (bool_t store_wfa, int enlarge_factor,
        int smoothing, const char *reference_frame,
        format_e format, video_t *video, dectimer_t *timer,
        wfa_t *orig_wfa, bitfile_t *input)
/*
 *  Get next frame of the WFA 'video' from stream 'input'.
 *  'orig_wfa' is the constant part of the WFA used by all frames.
 *  Depending on values of 'enlarge_factor' and 'smoothing' enlarge and
 *  smooth image, respectively.
 *  If 'store_wfa' is TRUE, then store WFA structure of reference frames
 *  (used by analysis tool xwfa).
 *  If 'reference_frame' is not NULL, then load image 'reference_frame'
 *  from disk.
 *  'format' gives the color format to be used (either 4:2:0 or 4:4:4).
 *  If 'timer' is not NULL, then accumulate running time statistics.
 *
 *  Return value:
 *  pointer to decoded frame
 *
 *  Side effects:
 *  'video' and 'timer' struct are modified.
 */
{
   image_t *frame             = NULL; /* current frame */
   image_t *sframe            = NULL; /* current smoothed frame */
   bool_t   current_frame_is_future_frame = NO;

   if (video->future_display == video->display)
   {
      /*
       *  Future frame is already computed since it has been used
       *  as reference frame. So just return the stored frame.
       */
      if (video->frame) /* discard current frame */
     free_image (video->frame);
      video->frame  = video->future;
      video->future = NULL;

      if (video->sframe) /* discard current (smoothed) frame */
     free_image (video->sframe);
      video->sframe  = video->sfuture;
      video->sfuture = NULL;

      if (store_wfa)
     copy_wfa (video->wfa, video->wfa_future);

      video->display++;

      if (!store_wfa)
     video->wfa = NULL;
   }
   else
   {
      do                /* compute next frame(s) */
      {
     unsigned      frame_number;    /* current frame number */
     clock_t       ptimer;
     unsigned int  stop_timer [3];
     wfa_t        *tmp_wfa = NULL;

     if (!store_wfa)
        video->wfa = orig_wfa;
     else
     {
        tmp_wfa = alloc_wfa (NO);
        copy_wfa (tmp_wfa, video->wfa);
        copy_wfa (video->wfa, orig_wfa);
     }

     /*
      *  First step: read WFA from disk
      */
     prg_timer (&ptimer, START);
     frame_number = read_next_wfa (video->wfa, input);
     stop_timer [0] = prg_timer (&ptimer, STOP);
     if (timer)
     {
        timer->input [video->wfa->frame_type] += stop_timer [0];
        timer->frames [video->wfa->frame_type]++;
     }

     /*
      *  Read reference frame from disk if required
      *  (i.e., 1st frame is of type B or P)
      */
     if (video->display == 0 && video->wfa->frame_type != I_FRAME)
     {
        if (!reference_frame)
           error ("First frame is %c-frame but no "
              "reference frame is given.",
              video->wfa->frame_type == B_FRAME ? 'B' : 'P');

        video->frame  = read_image_file (reference_frame);
        video->sframe = NULL;
     }

     /*
      *  Depending on current frame type update past and future frames
      */
     if (video->wfa->frame_type == I_FRAME)
     {
        if (video->past)        /* discard past frame */
           free_image (video->past);
        video->past = NULL;
        if (video->future)      /* discard future frame */
           free_image (video->future);
        video->future = NULL;
        if (video->sfuture)     /* discard (smoothed) future frame */
           free_image (video->sfuture);
        video->sfuture = NULL;
        if (video->frame)       /* discard current frame */
           free_image (video->frame);
        video->frame = NULL;
        if (video->sframe)      /* discard current (smoothed) frame */
           free_image (video->sframe);
        video->sframe = NULL;
     }
     else if (video->wfa->frame_type == P_FRAME)
     {
        if (video->past)        /* discard past frame */
           free_image (video->past);
        video->past = video->frame; /* past <- current frame */
        video->frame = NULL;
        if (video->sframe)      /* discard current (smoothed) frame */
           free_image (video->sframe);
        video->sframe = NULL;
        if (store_wfa)
           copy_wfa (video->wfa_past, tmp_wfa);
        if (video->future)      /* discard future frame */
           free_image (video->future);
        video->future = NULL;
        if (video->sfuture)     /* discard (smoothed) future frame */
           free_image (video->sfuture);
        video->sfuture = NULL;
     }
     else               /* B_FRAME */
     {
        if (current_frame_is_future_frame)
        {
           if (video->future)   /* discard future frame */
          free_image (video->future);
           video->future = frame;   /* future <- current frame */
           if (video->sfuture)  /* discard (smoothed) future frame */
          free_image (video->sfuture);
           video->sfuture = sframe; /* future <- current (smoothed) */
           if (store_wfa)
          copy_wfa (video->wfa_future, tmp_wfa);
           if (video->frame)    /* discard current frame */
          free_image (video->frame);
           video->frame = NULL;
           if (video->sframe)   /* discard current (smoothed) frame */
          free_image (video->sframe);
           video->sframe = NULL;
           frame  = NULL;
           sframe = NULL;
        }
        else
        {
           if (video->wfa->wfainfo->B_as_past_ref == YES)
           {
          if (video->past)  /* discard past frame */
             free_image (video->past);
          video->past  = video->frame; /* past <- current frame */
          video->frame = NULL;
          if (video->sframe)    /* discard current (smoothed) frame */
             free_image (video->sframe);
          video->sframe = NULL;
          if (store_wfa)
             copy_wfa (video->wfa_past, tmp_wfa);
           }
           else
           {
          if (video->frame) /* discard current */
             free_image (video->frame);
          video->frame = NULL;
          if (video->sframe)    /* discard current (smoothed) frame */
             free_image (video->sframe);
          video->sframe = NULL;
           }
        }
     }
     if (tmp_wfa)
        free_wfa (tmp_wfa);

     current_frame_is_future_frame = NO;
     /*
      *  Second step: decode image
      *  Optionally enlarge image if specified by option 'enlarge_factor'.
      */
     {
        unsigned orig_width, orig_height;

        stop_timer [0] = stop_timer [1] = stop_timer [2] = 0;

        enlarge_image (enlarge_factor, format,
               (video->wfa->wfainfo->color
                && format == FORMAT_4_2_0)
               ? video->wfa->tree [video->wfa->tree [video->wfa->root_state][0]][0] : -1, video->wfa);

        if (enlarge_factor > 0)
        {
           orig_width  = video->wfa->wfainfo->width  << enlarge_factor;
           orig_height = video->wfa->wfainfo->height << enlarge_factor;
        }
        else
        {
           orig_width  = video->wfa->wfainfo->width  >> - enlarge_factor;
           orig_height = video->wfa->wfainfo->height >> - enlarge_factor;
           if (orig_width & 1)
          orig_width++;
           if (orig_height & 1)
          orig_height++;
        }

        frame = decode_image (orig_width, orig_height, format,
                  timer != NULL ? stop_timer : NULL,
                  video->wfa);
        if (timer)
        {
           timer->preprocessing [video->wfa->frame_type] += stop_timer [0];
           timer->decoder [video->wfa->frame_type]       += stop_timer [1];
           timer->cleanup [video->wfa->frame_type]       += stop_timer [2];
        }
     }

     /*
      *  Third step: restore motion compensation
      */
     if (video->wfa->frame_type != I_FRAME)
     {
        prg_timer (&ptimer, START);
        restore_mc (enlarge_factor, frame, video->past, video->future,
            video->wfa);
        stop_timer [0] = prg_timer (&ptimer, STOP);
        if (timer)
           timer->motion [video->wfa->frame_type] += stop_timer [0];
     }

     /*
      *  Fourth step: smooth image along partitioning borders
      */
     prg_timer (&ptimer, START);
     if (smoothing < 0) /* smoothing not changed by user */
        smoothing = video->wfa->wfainfo->smoothing;
     if (smoothing > 0 && smoothing <= 100)
     {
        sframe = clone_image (frame);
        smooth_image (smoothing, video->wfa, sframe);
     }
     else
        sframe = NULL;

     stop_timer [0] = prg_timer (&ptimer, STOP);
     if (timer)
        timer->smooth [video->wfa->frame_type] += stop_timer [0];

     if (frame_number == video->display)
     {
        video->display++;
        video->frame  = frame;
        video->sframe = sframe;
        frame         = NULL;
        sframe        = NULL;
     }
     else if (frame_number > video->display)
     {
        video->future_display     = frame_number;
        current_frame_is_future_frame = YES;
     }

     if (!store_wfa)
        remove_states (video->wfa->basis_states, video->wfa);
      } while (!video->frame);

      if (!store_wfa)
     video->wfa = NULL;
   }

   return video->sframe ? video->sframe : video->frame;
}

image_t *
decode_image (unsigned orig_width, unsigned orig_height, format_e format,
          unsigned *dec_timer, const wfa_t *wfa)
/*
 *  Compute image which is represented by the given 'wfa'.
 *  'orig_width'x'orig_height' gives the resolution of the image at
 *  coding time. Use 4:2:0 subsampling or 4:4:4 'format' for color images.
 *  If 'dec_timer' is given, accumulate running time statistics.
 *
 *  Return value:
 *  pointer to decoded image
 *
 *  Side effects:
 *  '*dectimer' is changed if 'dectimer' != NULL.
 */
{
   unsigned   root_state [3];       /* root of bintree for each band */
   unsigned   width, height;        /* computed image size */
   image_t   *frame;            /* regenerated frame */
   word_t   **images;           /* pointer to array of pointers
                       to state images */
   u_word_t  *offsets;          /* pointer to array of state image
                       offsets */
   unsigned   max_level;        /* max. level of state with approx. */
   unsigned   state;
   clock_t    ptimer;

   prg_timer (&ptimer, START);

   /*
    *  Compute root of bintree for each color band
    */
   if (wfa->wfainfo->color)
   {
      root_state [Y]  = wfa->tree [wfa->tree [wfa->root_state][0]][0];
      root_state [Cb] = wfa->tree [wfa->tree [wfa->root_state][0]][1];
      root_state [Cr] = wfa->tree [wfa->tree [wfa->root_state][1]][0];
   }
   else
      root_state [GRAY] = wfa->root_state;

   /*
    *  Compute maximum level of a linear combination
    */
   for (max_level = 0, state = wfa->basis_states; state < wfa->states; state++)
      if (isedge (wfa->into [state][0][0]) || isedge (wfa->into [state][1][0]))
     max_level = MAX(max_level, wfa->level_of_state [state]);


   /*
    *  Allocate frame buffer for decoded image
    */
   compute_actual_size (format == FORMAT_4_2_0 ? root_state [Y] : MAXSTATES,
            &width, &height, wfa);
   width  = MAX(width, orig_width);
   height = MAX(height, orig_height);
   frame = alloc_image (width, height, wfa->wfainfo->color, format);

   /*
    *  Allocate buffers for intermediate state images
    */
   if (wfa->wfainfo->color)
   {
      wfa->level_of_state [wfa->root_state]               = 128;
      wfa->level_of_state [wfa->tree[wfa->root_state][0]] = 128;
      wfa->level_of_state [wfa->tree[wfa->root_state][1]] = 128;
   }
   alloc_state_images (&images, &offsets, frame, root_state, 0, max_level,
               format, wfa);

   if (dec_timer)
      dec_timer [0] += prg_timer (&ptimer, STOP);

   /*
    *  Decode all state images, forming the complete image.
    */
   prg_timer (&ptimer, START);
   compute_state_images (max_level, images, offsets, wfa);
   if (dec_timer)
      dec_timer [1] += prg_timer (&ptimer, STOP);

   /*
    *  Cleanup buffers used for intermediate state images
    */
   prg_timer (&ptimer, START);
   free_state_images (max_level, frame->color, images, offsets, root_state, 0,
              format, wfa);

   /*
    *  Crop decoded image if the image size differs.
    */
   if (orig_width != width || orig_height != height)
   {
      frame->height = orig_height;
      frame->width  = orig_width;
      if (orig_width != width)
      {
     color_e   band;        /* current color band */
     word_t   *src, *dst;       /* source and destination pointers */
     unsigned  y;           /* current row */

     for (band  = first_band (frame->color);
          band <= last_band (frame->color); band++)
     {
        src = dst = frame->pixels [band];
        for (y = orig_height; y; y--)
        {
           memmove (dst, src, orig_width * sizeof (word_t));
           dst += orig_width;
           src += width;
        }
        if (format == FORMAT_4_2_0 && band == Y)
        {
           orig_width  >>= 1;
           orig_height >>= 1;
           width       >>= 1;
        }
     }
      }
   }
   if (dec_timer)
      dec_timer [2] += prg_timer (&ptimer, STOP);

   return frame;
}

image_t *
decode_state (unsigned state, unsigned level, wfa_t *wfa)
/*
 *  Decode 'state' image of 'wfa' at given 'level'.
 *
 *  Return value.
 *  pointer to decoded state image
 *
 *  Side effects:
 *  'wfa' states > 'state' are removed.
 */
{
   word_t  *domains [2];
   image_t *img = Calloc (1, sizeof (image_t));

   /*
    *  Generate a new state with a 1.0 transition to 'state'
    */
   remove_states (state + 1, wfa);
   append_edge (state + 1, state, 1.0, 0, wfa);
   wfa->states = state + 2;

   img->color  = NO;
   img->width  = width_of_level (level);
   img->height = height_of_level (level);
   img->format = FORMAT_4_4_4;
   img->pixels [GRAY] = decode_range (state + 1, 0, level, domains, wfa);

   /*
    *  Copy decoded range to the frame buffer
    */
   {
      word_t   *src, *dst;
      unsigned  y;

      src = domains [0];
      dst = img->pixels [GRAY];
      for (y = img->height; y; y--)
      {
     memcpy (dst, src, width_of_level (level) * sizeof (word_t));
     src += width_of_level (level);
     dst += img->width;
      }
      Free (domains [0]);
   }

   return img;
}

word_t *
decode_range (unsigned range_state, unsigned range_label, unsigned range_level,
          word_t **domain, wfa_t *wfa)
/*
 *  Compute 'wfa' image of range (identified by 'state' and 'label')
 *  at 'range_level (works as function decode_image()).
 *
 *  Return value:
 *  pointer to the pixels in SHORT format
 *
 *  Side effects:
 *  if 'domain' != NULL then also the domain blocks
 *  of the corresponding range blocks are generated
 *      and returned in domain[]
 *  'wfa->level_of_state []' is changed
 */
{
    image_t   *state_image;      /* regenerated state image */
    word_t   **images;           /* pointer to array of pointers
                                    to state images */
    u_word_t  *offsets;          /* pointer to array of state image
                                    offsets */
    word_t    *range;

    enlarge_image (range_level - (wfa->level_of_state [range_state] - 1),
                   FORMAT_4_4_4, -1, wfa);
    state_image = alloc_image (width_of_level (range_level + 1),
                               height_of_level (range_level + 1),
                               NO, FORMAT_4_4_4);
    alloc_state_images (&images, &offsets, state_image, NULL, range_state,
                        range_level + 1, FORMAT_4_4_4, wfa);
    compute_state_images (range_level + 1, images, offsets, wfa);

    range = Calloc (size_of_level (range_level), sizeof (word_t));

    if ((range_level & 1) == 0)      /* square image */
    {
        memcpy (range,
                images [range_state + (range_level + 1) * wfa->states]
                + range_label * size_of_level (range_level),
                size_of_level (range_level) * sizeof (word_t));
    }
    else                 /* rectangle */
    {
        word_t   *src, *dst;
        unsigned  y;

        src = images [range_state + (range_level + 1) * wfa->states]
            + range_label * width_of_level (range_level);
        dst = range;
        for (y = height_of_level (range_level); y; y--)
        {
            memcpy (dst, src, width_of_level (range_level) * sizeof (word_t));
            dst += width_of_level (range_level);
            src += width_of_level (range_level + 1);
        }
    }

    if (domain != NULL)          /* copy domain images */
    {
        int      s;           /* domain state */
        unsigned edge;            /* counter */

        if (ischild (s = wfa->tree [range_state][range_label]))
            *domain++ = duplicate_state_image (images [s + (range_level)
                                                       * wfa->states],
                                               offsets [s + (range_level)
                                                        * wfa->states],
                                               range_level);
        for (edge = 0; isedge (s = wfa->into[range_state][range_label][edge]);
             edge++)
            *domain++ = duplicate_state_image (images [s + (range_level)
                                                       * wfa->states],
                                               offsets [s + (range_level)
                                                        * wfa->states],
                                               range_level);
        *domain = NULL;
    }

    free_state_images (range_level + 1, NO, images, offsets, NULL, range_state,
                       FORMAT_4_4_4, wfa);
    free_image (state_image);

    return range;
}

void
smooth_image (unsigned sf, const wfa_t *wfa, image_t *image)
/*
 *  Smooth 'image' along the partitioning boundaries of the 'wfa'
 *  with factor 's'.
 *
 *  No return value.
 *
 *  Side effects:
 *  pixel values of the 'image' are modified with respect to 's'
 */
{
   int      is, inegs;          /* integer factors of s and 1 - s*/
   unsigned state;
   unsigned img_width  = image->width;
   unsigned img_height = image->height;
   real_t   s          = 1.0 - sf / 200.0;

   if (s < 0.5 || s >= 1)       /* value out of range */
      return;

   is    = s * 512 + .5;        /* integer representation of s */
   inegs = (1 - s) * 512 + .5;      /* integer representation of 1 - s */

   for (state = wfa->basis_states;
    state < (wfa->wfainfo->color
         ? wfa->tree [wfa->root_state][0]
         : wfa->states); state++)
   {
      word_t   *bptr   = image->pixels [Y]; /* pointer to right or
                           lower line */
      unsigned  level  = wfa->level_of_state[state]; /* level of state image */
      unsigned  width  = width_of_level (level); /* size of state image */
      unsigned  height = height_of_level (level); /* size of state image */

      if (wfa->y [state][1] >= img_height || wfa->x [state][1] >= img_width)
     continue;          /* outside visible area */

      if (level % 2)            /* horizontal smoothing */
      {
     unsigned  i;           /* line counter */
     word_t   *img1;        /* pointer to left or upper line */
     word_t   *img2;        /* pointer to right or lower line */

     img1 = bptr + (wfa->y [state][1] - 1) * img_width
        + wfa->x [state][1];
     img2 = bptr + wfa->y [state][1] * img_width + wfa->x [state][1];

     for (i = MIN(width, img_width - wfa->x [state][1]); i;
          i--, img1++, img2++)
     {
        int tmp = *img1;

#ifdef HAVE_SIGNED_SHIFT
        *img1 = (((is * tmp) >> 10) << 1)
            + (((inegs * (int) *img2) >> 10) << 1);
        *img2 = (((is * (int) *img2) >> 10) << 1)
            + (((inegs * tmp) >> 10) << 1);
#else /* not HAVE_SIGNED_SHIFT */
        *img1 = (((is * tmp) / 1024) * 2)
            + (((inegs * (int) *img2) / 1024) * 2);
        *img2 = (((is * (int) *img2) / 1024) * 2)
            + (((inegs * tmp) / 1024) *2);
#endif /* not HAVE_SIGNED_SHIFT */
     }
      }
      else              /* vertical smoothing */
      {
     unsigned  i;           /* line counter */
     word_t   *img1;        /* pointer to left or upper line */
     word_t   *img2;        /* pointer to right or lower line */

     img1 = bptr + wfa->y [state][1] * img_width + wfa->x [state][1] - 1;
     img2 = bptr + wfa->y [state][1] * img_width + wfa->x [state][1];

     for (i = MIN(height, img_height - wfa->y [state][1]); i;
          i--, img1 += img_width, img2 += img_width)
     {
        int tmp = *img1;

#ifdef HAVE_SIGNED_SHIFT
        *img1 = (((is * tmp) >> 10) << 1)
            + (((inegs * (int) *img2) >> 10) << 1);
        *img2 = (((is * (int) *img2) >> 10) << 1)
            + (((inegs * tmp) >> 10) << 1);
#else /* not HAVE_SIGNED_SHIFT */
        *img1 = (((is * tmp) / 1024) * 2)
            + (((inegs * (int) *img2) / 1024) * 2);
        *img2 = (((is * (int) *img2) / 1024) * 2)
            + (((inegs * tmp) / 1024) *2);
#endif /* not HAVE_SIGNED_SHIFT */
     }
      }
   }
}

/*****************************************************************************

                private code

*****************************************************************************/

static void
enlarge_image (int enlarge_factor, format_e format, unsigned y_root,
           wfa_t *wfa)
/*
 *  Enlarge or reduce size of state images by factor 2^'enlarge_factor'.
 *  Use 4:2:0 subsampling if specified by 'format', else use 4:4:4 format.
 *  'wfa' root state of the first chroma band is given by 'y_root' + 1.
 *
 *  No return value.
 *
 *  Side effects:
 *  coordinates of ranges and motion blocks in the WFA structure 'wfa'
 *  are modified.
 */
{

   if (enlarge_factor != 0 || format == FORMAT_4_2_0)
   {
      unsigned state;

      if (enlarge_factor == 0)
      {
     state      = y_root + 1;
     enlarge_factor = -1;
      }
      else
     state = wfa->basis_states;

      for (; state < wfa->states; state++)
      {
     unsigned label, n;

     wfa->level_of_state [state]
        = MAX(wfa->level_of_state [state] + enlarge_factor * 2, 0);

     for (label = 0; label < MAXLABELS; label++)
        if (enlarge_factor > 0)
        {
           wfa->x [state][label] <<= enlarge_factor;
           wfa->y [state][label] <<= enlarge_factor;
           for (n = enlarge_factor; n; n--)
           {
          wfa->mv_tree [state][label].fx *= 2;
          wfa->mv_tree [state][label].fy *= 2;
          wfa->mv_tree [state][label].bx *= 2;
          wfa->mv_tree [state][label].by *= 2;
           }
        }
        else                /* enlarge_factor < 0 */
        {
           wfa->x [state][label] >>= - enlarge_factor;
           wfa->y [state][label] >>= - enlarge_factor;
           for (n = - enlarge_factor; n; n--)
           {
          wfa->mv_tree [state][label].fx /= 2;
          wfa->mv_tree [state][label].fy /= 2;
          wfa->mv_tree [state][label].bx /= 2;
          wfa->mv_tree [state][label].by /= 2;
           }
        }
     if (format == FORMAT_4_2_0 && state == y_root)
        enlarge_factor--;
      }
   }
}

static void
compute_actual_size (unsigned luminance_root,
             unsigned *width, unsigned *height, const wfa_t *wfa)
/*
 *  Compute actual size of the frame represented by the given 'wfa'.
 *  (The reconstructed frame may get larger than the original due
 *   to the bintree partitioning.)
 *  If 'luminance_root' < MAXSTATES then the size of chroma ranges (4:2:0).
 *
 *  Return values:
 *  actual 'width' and 'height' of the decoded frame.
 */
{
   unsigned x = 0, y = 0;       /* maximum coordinates */
   unsigned state;          /* counter */

   for (state = wfa->basis_states; state < wfa->states; state++)
      if (isedge (wfa->into [state][0][0]) || isedge (wfa->into [state][1][0]))
      {
          unsigned mult = state > luminance_root ? 2 : 1;

          x = MAX((wfa->x [state][0]
                   + width_of_level (wfa->level_of_state [state])) * mult, x);
          y = MAX((wfa->y [state][0]
                   + height_of_level (wfa->level_of_state [state])) * mult, y);
      }

   if (x & 1)               /* ensure that image size is even */
      x++;
   if (y & 1)
      y++;
   *width  = x;
   *height = y;
}

static void
alloc_state_images (word_t ***images, u_word_t **offsets, const image_t *frame,
            const unsigned *root_state, unsigned range_state,
            unsigned max_level, format_e format, const wfa_t *wfa)
/*
 *  Generate list of 'wfa' state images which have to be computed for
 *  each level to obtain the decoded 'frame'. 'root_state[]' denotes the
 *  state images of the three color bands.
 *  'max_level' fives the max. level of a linear combination.
 *  Memory is allocated for every required state image.
 *  Use 4:2:0 subsampling or 4:4:4 'format' for color images.
 *  If 'range_state' > 0 then rather compute image of 'range_state' than
 *  image of 'wfa->root_state'.
 *
 *  Return values:
 *  '*images'   Pointer to array of state image pointers
 *  '*offsets'  Pointer to array of state image offsets.
 *
 *  Side effects:
 *  The arrays given above are filled with useful values.
 */
{
   word_t   **simg;         /* ptr to list of state image ptr's */
   u_word_t  *offs;         /* ptr to list of offsets */
   unsigned   level;            /* counter */

   simg = Calloc (wfa->states * (max_level + 1), sizeof (word_t *));
   offs = Calloc (wfa->states * (max_level + 1), sizeof (u_word_t));

   /*
    *  Initialize buffers for those state images which are at 'max_level'.
    */
   if (range_state > 0)         /* a range is given */
   {
      simg [range_state + max_level * wfa->states] = frame->pixels [GRAY];
      offs [range_state + max_level * wfa->states] = frame->width;
   }
   else
   {
      unsigned state;

      for (state = wfa->basis_states; state <= root_state [Y]; state++)
     if (wfa->level_of_state [state] == max_level)
     {
        simg [state + max_level * wfa->states]
           = (frame->pixels [Y] + wfa->y [state][0] * frame->width
          + wfa->x [state][0]);
        offs [state + max_level * wfa->states] = frame->width;
     }
      if (frame->color)
      {
     unsigned width = format == FORMAT_4_2_0 ?
              (frame->width >> 1) : frame->width;
     for (; state < wfa->states; state++)
        if (wfa->level_of_state [state] == max_level)
        {
           simg [state + max_level * wfa->states]
          = (frame->pixels [state > root_state [Cb] ? Cr : Cb]
             + wfa->y [state][0] * width + wfa->x [state][0]);
           offs [state + max_level * wfa->states] = width;
        }
      }
   }

   /*
    *  Generate list of state images which must be computed at each level
    */
   for (level = max_level; level > 0; level--)
   {
      int      child, domain;
      unsigned state, label, edge;

      /*
       *  Range approximation with child.
       */
      for (state = 1; state < (range_state > 0 ?
                   range_state + 1 : wfa->states); state++)
     if (simg [state + level * wfa->states])
        for (label = 0; label < MAXLABELS; label++)
           if (ischild (child = wfa->tree[state][label]))
           {
          if (isedge (wfa->into[state][label][0]))
          {
             /*
              *  Allocate new image block.
              */
             simg [child + (level - 1) * wfa->states]
            = Calloc (size_of_level (level - 1), sizeof (word_t));
             offs [child + (level - 1) * wfa->states]
            = width_of_level (level - 1);
          }
          else
          {
             /*
              *  Use image block and offset of parent.
              */
             if (level & 1) /* split vertically */
             {
            simg [child + (level - 1) * wfa->states]
               = (simg [state + level * wfa->states]
                  + label * (height_of_level (level - 1)
                     * offs [state
                        + level * wfa->states]));
             }
             else       /* split horizontally */
             {
            simg [child + (level - 1) * wfa->states]
               = (simg [state + level * wfa->states]
                  + label * width_of_level (level - 1));
             }
             offs [child + (level - 1) * wfa->states]
            = offs [state + level * wfa->states];
          }
           }
      /*
       *  Range approximation with linear combination
       */
      for (state = 1; state < (range_state > 0 ?
                   range_state + 1 : wfa->states); state++)
     if (simg [state + level * wfa->states])
        for (label = 0; label < MAXLABELS; label++)
           for (edge = 0; isedge (domain = wfa->into[state][label][edge]);
            edge++)
           {
          if (domain > 0    /* don't allocate memory for state 0 */
              && !simg [domain + (level - 1) * wfa->states])
          {
             simg [domain + (level - 1) * wfa->states]
            = Calloc (size_of_level (level - 1), sizeof (word_t));
             offs [domain + (level - 1) * wfa->states]
            = width_of_level (level - 1);
          }
           }

   }

   *images  = simg;
   *offsets = offs;
}

static void
free_state_images (unsigned max_level, bool_t color, word_t **state_image,
           u_word_t *offset, const unsigned *root_state,
           unsigned range_state, format_e format, const wfa_t *wfa)
/*
 *  Free memory of state images.
 *  For more details refer to the inverse function 'alloc_state_images()'.
 *
 *  No return value.
 *
 *  Side effects:
 *  arrays 'state_image' and 'offset' are discarded.
 */
{
   word_t   marker;         /* ptr is required as a marker */
   unsigned level;

   if (range_state > 0)
   {
      state_image [range_state + max_level * wfa->states] = &marker;
   }
   else
   {
      unsigned state;

      /*
       *  Initialize state image array with states at 'max_level'
       */
      for (state = wfa->basis_states; state <= root_state [Y]; state++)
     if (wfa->level_of_state [state] == max_level)
        state_image [state + max_level * wfa->states] = &marker;

      if (color)
      {
     if (format == FORMAT_4_2_0)
        level = max_level - 2;
     else
        level = max_level;

     for (; state < wfa->states; state++)
        if (wfa->level_of_state [state] == level)
           state_image [state + level * wfa->states] = &marker;
      }
   }

   for (level = max_level; level > 0; level--)
   {
      int      domain, child;
      unsigned state, label, edge;
      /*
       *  Range approximation with child.
       */
      for (state = 1; state < (range_state > 0 ?
                   range_state + 1 : wfa->states); state++)
     if (state_image [state + level * wfa->states])
        for (label = 0; label < MAXLABELS; label++)
           if (ischild (child = wfa->tree[state][label]))
           {
          if (isedge (wfa->into[state][label][0])
              && (state_image [child + (level - 1) * wfa->states]
              != &marker))
             Free (state_image [child + (level - 1) * wfa->states]);
          state_image [child + (level - 1) * wfa->states] = &marker;
           }
      /*
       *  Range approximation with linear combination
       */
      for (state = 1; state < (range_state > 0 ?
                   range_state + 1 : wfa->states);
       state++)
     if (state_image [state + level * wfa->states])
        for (label = 0; label < MAXLABELS; label++)
           for (edge = 0; isedge (domain = wfa->into[state][label][edge]);
            edge++)
          if (domain > 0
              && (state_image [domain + (level - 1) * wfa->states]
              != NULL)
              && (state_image [domain + (level - 1) * wfa->states]
              != &marker))
          {
             Free (state_image [domain + (level - 1) * wfa->states]);
             state_image [domain + (level - 1) * wfa->states]
            = &marker;
          }
   }
   Free (state_image);
   Free (offset);
}

static void
compute_state_images (unsigned max_level, word_t **simg,
              const u_word_t *offset, const wfa_t *wfa)
/*
 *  Compute all state images of the 'wfa' at level {1, ... , 'max_level'}
 *  which are marked in the array 'simg' (offsets of state images
 *  are given by 'offset').
 *
 *  Warning: Several optimizations are used in this function making
 *  it difficult to understand.
 *
 *  No return value.
 *
 *  Side effects:
 *  state images (given by pointers in the array 'state_image')
 *  are computed.
 */
{
   unsigned level, state;

   /*
    *  Copy one-pixel images in case state_image pointer != &final distr.
    */

   for (state = 1; state < wfa->states; state++)
      if (simg [state] != NULL)     /* compute image at level 0 */
     *simg [state] = (int) (wfa->final_distribution[state] * 8 + .5) * 2;

   /*
    *  Compute images of states
    *  Integer arithmetics are used rather than floating point operations.
    *  'weight' gives the weight in integer notation
    *  'src', 'dst', and 'idst' are pointers to the source and
    *  destination pixels (short or integer format), respectively.
    *  Short format : one operation per register (16 bit mode).
    *  Integer format : two operations per register (32 bit mode).
    *  'src_offset', 'dst_offset', and 'dst_offset' give the number of
    *  pixels which have to be omitted when jumping to the next image row.
    */
   for (level = 1; level <= max_level; level++)
   {
      unsigned label;
      unsigned width  = width_of_level (level - 1);
      unsigned height = height_of_level (level - 1);

      for (state = 1; state < wfa->states; state++)
     if (simg [state + level * wfa->states] != NULL)
        for (label = 0; label < MAXLABELS; label++)
           if (isedge (wfa->into [state][label][0]))
           {
          unsigned  edge;
          int       domain;
          word_t   *range;  /* address of current range */
          bool_t    prediction_used; /* ND prediction found ? */

          /*
           *  Compute address of range image
           */
          if (level & 1)    /* split vertically */
          {
             range = simg [state + level * wfa->states]
                 + label * (height_of_level (level - 1)
                    * offset [state
                         + level * wfa->states]);
          }
          else          /* split horizontally */
          {
             range = simg [state + level * wfa->states]
                 + label * width_of_level (level - 1);
          }

          /*
           *  Generate the state images by adding the corresponding
           *  weighted state images:
           *  subimage [label] =
           *       weight_1 * image_1 + ... + weight_n * image_n
           */
          if (!ischild (domain = wfa->tree[state][label]))
             prediction_used = NO;
          else
          {
             unsigned  y;
             word_t   *src;
             word_t   *dst;
             unsigned  src_offset;
             unsigned  dst_offset;

             prediction_used = YES;
             /*
              *  Copy child image
              */
             src        = simg [domain + (level - 1) * wfa->states];
             src_offset = offset [domain + (level - 1) * wfa->states] ;
             dst        = range;
             dst_offset = offset [state + level * wfa->states];
             for (y = height; y; y--)
             {
            memcpy (dst, src, width * sizeof (word_t));
            src += src_offset;
            dst += dst_offset;
             }
          }

          if (!prediction_used
              && isedge (domain = wfa->into[state][label][0]))
          {
             /*
              *  If prediction is not used then the range is
              *  filled with the first domain. No addition is needed.
              */
             edge = 0;
             if (domain != 0)
             {
            int   weight;
            word_t   *src;
            unsigned  src_offset;

            src        = simg [domain + ((level - 1)
                             * wfa->states)];
            src_offset = offset [domain + ((level - 1)
                               * wfa->states)] - width;
            weight     = wfa->int_weight [state][label][edge];

            if (width == 1) /* can't add two-pixels in a row */
            {
               word_t   *dst;
               unsigned  dst_offset;

               dst        = range;
               dst_offset = offset [state + level * wfa->states]
                    - width;
#ifdef HAVE_SIGNED_SHIFT
               *dst++ = ((weight * (int) *src++) >> 10) << 1;
#else                   /* not HAVE_SIGNED_SHIFT */
               *dst++ = ((weight * (int) *src++) / 1024) * 2;
#endif /* not HAVE_SIGNED_SHIFT */
               if (height == 2)
               {
                  src += src_offset;
                  dst += dst_offset;
#ifdef HAVE_SIGNED_SHIFT
                  *dst++ = ((weight * (int) *src++) >> 10) << 1;
#else /* not HAVE_SIGNED_SHIFT */
                  *dst++ = ((weight * (int) *src++) / 1024) * 2;
#endif /* not HAVE_SIGNED_SHIFT */
               }
            }
            else
            {
               unsigned  y;
               int      *idst;
               unsigned  idst_offset;

               idst        = (int *) range;
               idst_offset = (offset [state + level * wfa->states]
                      - width) / 2;
               for (y = height; y; y--)
               {
                  int *comp_dst = idst + (width >> 1);

                  for (; idst != comp_dst; )
                  {
                 int tmp; /* temp. value of adjacent pixels */
#ifdef HAVE_SIGNED_SHIFT
#   if BYTE_ORDER == LITTLE_ENDIAN
                 tmp = (((weight * (int) src [1]) >> 10) << 17)
                     | (((weight * (int) src [0]) >> 9)
                        & 0xfffe);
#   else
                 tmp = (((weight * (int) src [0]) >> 10) << 17)
                     | (((weight * (int) src [1]) >> 9)
                        & 0xfffe);
#   endif
#else /* not HAVE_SIGNED_SHIFT */
#   if BYTE_ORDER == LITTLE_ENDIAN
                 tmp = (((weight * (int) src [1]) / 1024)
                        * 131072)
                     | (((weight * (int) src [0])/ 512)
                        & 0xfffe);
#   else
                 tmp = (((weight * (int) src [0]) / 1024)
                        * 131072)
                     | (((weight * (int) src [1]) / 512)
                        & 0xfffe);
#   endif
#endif /* not HAVE_SIGNED_SHIFT */
                 src    +=  2;
                 *idst++ = tmp & 0xfffefffe;
                  }
                  src  += src_offset;
                  idst += idst_offset;
               }
            }
             }
             else
             {
            int weight = (int) (wfa->weight[state][label][edge]
                        * wfa->final_distribution[0]
                        * 8 + .5) * 2;
            /*
             *  Range needs domain 0
             *  (the constant function f(x, y) = 1),
             *  hence a faster algorithm is used.
             */
            if (width == 1) /* can't add two-pixels in a row */
            {
               word_t   *dst;
               unsigned  dst_offset;

               dst        = range;
               dst_offset = offset [state + level * wfa->states]
                    - width;

               *dst++ = weight;
               if (height == 2)
               {
                  dst += dst_offset;
                  *dst++ = weight;
               }
            }
            else
            {
               unsigned  x, y;
               int      *idst;
               unsigned  idst_offset;

               weight      = (weight * 65536) | (weight & 0xffff);
               idst        = (int *) range;
               idst_offset = offset [state + level * wfa->states]
                     / 2;
               for (x = width >> 1; x; x--)
                  *idst++ = weight & 0xfffefffe;
               idst += (offset [state + level * wfa->states]
                    - width) / 2;

               for (y = height - 1; y; y--)
               {
                  memcpy (idst, idst - idst_offset,
                      width * sizeof (word_t));
                  idst += idst_offset;
               }
            }
             }
             edge = 1;
          }
          else
             edge = 0;

          /*
           *  Add remaining weighted domain images to current range
           */
          for (; isedge (domain = wfa->into[state][label][edge]);
               edge++)
          {
             if (domain != 0)
             {
            word_t   *src;
            unsigned  src_offset;
            int   weight;

            src        = simg [domain + (level - 1) * wfa->states];
            src_offset = offset [domain + ((level - 1)
                               * wfa->states)] - width;
            weight     = wfa->int_weight [state][label][edge];

            if (width == 1) /* can't add two-pixels in a row */
            {
               word_t   *dst;
               unsigned  dst_offset;

               dst        = range;
               dst_offset = offset [state + level * wfa->states]
                    - width;

#ifdef HAVE_SIGNED_SHIFT
               *dst++ += ((weight * (int) *src++) >> 10) << 1;
#else /* not HAVE_SIGNED_SHIFT */
               *dst++ += ((weight * (int) *src++) / 1024) * 2;
#endif /* not HAVE_SIGNED_SHIFT */
               if (height == 2)
               {
                  src += src_offset;
                  dst += dst_offset;
#ifdef HAVE_SIGNED_SHIFT
                  *dst++ += ((weight * (int) *src++) >> 10) << 1;
#else /* not HAVE_SIGNED_SHIFT */
                  *dst++ += ((weight * (int) *src++) / 1024) * 2;
#endif /* not HAVE_SIGNED_SHIFT */
               }
            }
            else
            {
               int      *idst;
               unsigned  idst_offset;
               unsigned  y;

               idst        = (int *) range;
               idst_offset = (offset [state + level * wfa->states]
                      - width) / 2;

               for (y = height; y; y--)
               {
                  int *comp_dst = idst + (width >> 1);

                  for (; idst != comp_dst;)
                  {
                 int tmp; /* temp. value of adjacent pixels */
#ifdef HAVE_SIGNED_SHIFT
#   if BYTE_ORDER == LITTLE_ENDIAN
                 tmp = (((weight * (int) src [1]) >> 10) << 17)
                     | (((weight * (int) src [0]) >> 9)
                        & 0xfffe);
#   else
                 tmp = (((weight * (int)src [0]) >> 10) << 17)
                     | (((weight * (int)src [1]) >> 9)
                        & 0xfffe);
#   endif
#else /* not HAVE_SIGNED_SHIFT */
#   if BYTE_ORDER == LITTLE_ENDIAN
                 tmp = (((weight * (int) src [1]) / 1024)
                        * 131072)
                     | (((weight * (int) src [0])/ 512)
                        & 0xfffe);
#   else
                 tmp = (((weight * (int) src [0]) / 1024)
                        * 131072)
                     | (((weight * (int) src [1])/ 512)
                        & 0xfffe);
#   endif
#endif /* not HAVE_SIGNED_SHIFT */
                 src +=  2;
                 *idst = (*idst + tmp) & 0xfffefffe;
                 idst++;
                  }
                  src  += src_offset;
                  idst += idst_offset;
               }
            }
             }
             else
             {
            int weight = (int) (wfa->weight[state][label][edge]
                        * wfa->final_distribution[0]
                        * 8 + .5) * 2;
            /*
             *  Range needs domain 0
             *  (the constant function f(x, y) = 1),
             *  hence a faster algorithm is used.
             */
            if (width == 1) /* can't add two-pixels in a row */
            {
               word_t   *dst;
               unsigned  dst_offset;

               dst        = range;
               dst_offset = offset [state + level * wfa->states]
                    - width;

               *dst++ += weight;
               if (height == 2)
               {
                  dst    += dst_offset;
                  *dst++ += weight;
               }
            }
            else
            {
               int      *idst;
               unsigned  idst_offset;
               unsigned  y;

               weight      = (weight * 65536) | (weight & 0xffff);
               idst        = (int *) range;
               idst_offset = (offset [state + level * wfa->states]
                      - width) /2;

               for (y = height; y; y--)
               {
                  int *comp_dst = idst + (width >> 1);

                  for (; idst != comp_dst; )
                  {
                 *idst = (*idst + weight) & 0xfffefffe;
                                 idst++;
                  }
                  idst += idst_offset;
               }
            }
             }
          }
           }
   }
}

static word_t *
duplicate_state_image (const word_t *domain, unsigned offset, unsigned level)
/*
 *  Allocate new memory block 'pixels' and copy pixel values of 'domain'
 *  (size and pixel offset are given by 'level' and 'offset')
 *  to the lock 'pixels'.
 *
 *  Return value:
 *  pointer to the new domain block
 */
{
   word_t *dst, *pixels;
   int     y, n;

   dst = pixels = Calloc (size_of_level (level), sizeof (word_t));

   if (domain)
      for (y = height_of_level (level); y; y--)
      {
     memcpy (dst, domain, width_of_level (level) * sizeof (word_t));
     dst    += width_of_level (level);
     domain += offset;
      }
   else                 /* state 0 */
      for (n = size_of_level (level); n; n--)
     *dst++ = (int) (128 * 8 + .5) * 2;

   return pixels;
}