/*============================================================================= pamcrater =============================================================================== Fractal cratering This is derived from John Walker's 'pgmcrater' which not only creates the terrain map as this program does, but then does a relief filter to convert it to a shaded visual image. The algorithm used to determine crater size is as described on pages 31 and 32 of: Peitgen, H.-O., and Saupe, D. eds., The Science Of Fractal Images, New York: Springer Verlag, 1988. The mathematical technique used to calculate crater radii that obey the proper area law distribution from a uniformly distributed pseudorandom sequence was developed by Rudy Rucker. The original program carried this attribution and license: Designed and implemented in November of 1989 by: John Walker Autodesk SA Avenue des Champs-Montants 14b CH-2074 MARIN Switzerland Usenet: kelvin@Autodesk.com Fax: 038/33 88 15 Voice: 038/33 76 33 Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, without any conditions or restrictions. This software is provided "as is" without express or implied warranty. =============================================================================*/ /* Modifications by Arjen Bax, 2001-06-21: Remove black vertical line at right edge. Make craters wrap around the image (enables tiling of image). */ #define _XOPEN_SOURCE 500 /* get M_PI in math.h */ #include #include #include "pm_c_util.h" #include "mallocvar.h" #include "rand.h" #include "shhopt.h" #include "nstring.h" #include "pam.h" struct CmdlineInfo { /* All the information the user supplied in the command line, in a form easy for the program to use. */ unsigned int number; unsigned int height; unsigned int width; unsigned int randomseedSpec; unsigned int randomseed; unsigned int verbose; unsigned int test; unsigned int radius; int offset; }; static void parseCommandLine(int argc, const char ** const argv, struct CmdlineInfo * const cmdlineP) { /*---------------------------------------------------------------------------- Note that the file spec array we return is stored in the storage that was passed to us as the argv array. -----------------------------------------------------------------------------*/ optEntry * option_def; /* Instructions to OptParseOptions3 on how to parse our options. */ optStruct3 opt; unsigned int option_def_index; unsigned int numberSpec, heightSpec, widthSpec, radiusSpec, offsetSpec; MALLOCARRAY_NOFAIL(option_def, 100); option_def_index = 0; /* incremented by OPTENT3 */ OPTENT3(0, "number", OPT_UINT, &cmdlineP->number, &numberSpec, 0); OPTENT3(0, "height", OPT_UINT, &cmdlineP->height, &heightSpec, 0); OPTENT3(0, "width", OPT_UINT, &cmdlineP->width, &widthSpec, 0); OPTENT3(0, "randomseed", OPT_UINT, &cmdlineP->randomseed, &cmdlineP->randomseedSpec, 0); OPTENT3(0, "verbose", OPT_FLAG, NULL, &cmdlineP->verbose, 0); OPTENT3(0, "test", OPT_FLAG, NULL, &cmdlineP->test, 0); OPTENT3(0, "radius", OPT_UINT, &cmdlineP->radius, &radiusSpec, 0); OPTENT3(0, "offset", OPT_INT, &cmdlineP->offset, &offsetSpec, 0); opt.opt_table = option_def; opt.short_allowed = FALSE; /* We have no short (old-fashioned) options */ opt.allowNegNum = FALSE; /* We may have parms that are negative numbers */ pm_optParseOptions3(&argc, (char **)argv, opt, sizeof(opt), 0); /* Uses and sets argc, argv, and some of *cmdlineP and others. */ if (argc-1 > 0) pm_error("There are no non-option arguments. You specified %u", argc-1); if (!heightSpec) cmdlineP->height = 256; if (cmdlineP->height == 0) pm_error("-height must be positive"); if (!widthSpec) cmdlineP->width = 256; if (cmdlineP->width == 0) pm_error("-width must be positive"); if (!offsetSpec) cmdlineP->offset=0; if (cmdlineP->test) { if (!radiusSpec) pm_error("With -test, you must specify -radius"); else { if(MAX(cmdlineP->height, cmdlineP->width) * 2 < cmdlineP->radius) pm_error("Radius (%u) too large", cmdlineP->radius); if (numberSpec) pm_error("-number is meaningless with -test"); if (cmdlineP->randomseedSpec) pm_error("-randomseed is meaningless with -test"); } } else { if (radiusSpec) pm_error("-radius is meaningful only with -test"); if (offsetSpec) pm_error("-offset is meaningful only with -test"); if (!numberSpec) cmdlineP->number = 50000; if (cmdlineP->number == 0) pm_error("-number must be positive"); } free(option_def); } static double const CdepthPower = 1.5; /* Crater depth power factor */ static double const DepthBias2 = 0.5; /* Square of depth bias */ static double const cast(double const high, struct pm_randSt * const randStP) { /*---------------------------------------------------------------------------- A random number in the range [0, 'high']. -----------------------------------------------------------------------------*/ return high * ((double) pm_rand(randStP) / randStP->max); } static unsigned int mod(int const t, unsigned int const n) { /* This is used to transform coordinates beyond bounds into ones within: craters "wrap around" the edges. This enables tiling of the image. Produces strange effects when crater radius is very large compared to image size. */ int m; m = t % (int)n; if (m < 0) m += n; return m; } static sample * terrainModP(struct pam * const pamP, tuple ** const terrain, int const x, int const y) { /*---------------------------------------------------------------------------- A pointer to the sample in 'terrain' of an image described by *pamP that is at Column 'x' of Row 'y', but modulus the image size. So e.g. if the image is 10 x 10 and 'x' and 'y' are both 12, our value would be a pointer to the sample at Column 2 or Row 2. If they are both -1, we would point to Column 9, Row 9. -----------------------------------------------------------------------------*/ return &terrain[mod(y, pamP->height)][mod(x, pamP->width)][0]; } static sample terrainMod(struct pam * const pamP, tuple ** const terrain, int const x, int const y) { /*---------------------------------------------------------------------------- The value of the sample in 'terrain' of an image described by *pamP that is at Column 'x' of Row 'y', but modulus the image size. So e.g. if the image is 10 x 10 and 'x' and 'y' are both 12, our value would be the value of the sample at Column 2 or Row 2. If they are both -1, we would return Column 9, Row 9. -----------------------------------------------------------------------------*/ return *terrainModP(pamP, terrain, x, y); } static void setElev(struct pam * const pamP, tuple ** const terrain, int const cx, int const cy, unsigned int const elevation) { *terrainModP(pamP, terrain, cx, cy) = MIN(pamP->maxval, elevation); } static void smallCrater(struct pam * const pamP, tuple ** const terrain, int const cx, int const cy, double const radius, struct pm_randSt * const randStP) { /*---------------------------------------------------------------------------- Generate a crater with a special method for tiny craters. Center the crater at Column 'cx', Row 'cy'; wrap as necessary to get them on the canvas. These might even be negative. -----------------------------------------------------------------------------*/ int y; unsigned int amptot; unsigned int npatch; assert(radius < 3); /* Set pixel to the average of its Moore neighborhood. */ for (y = cy - 1, amptot = 0, npatch = 0; y <= cy + 1; ++y) { int x; for (x = cx - 1; x <= cx + 1; ++x) { amptot += terrainMod(pamP, terrain, x, y); ++npatch; } } { unsigned int const axelev = amptot / npatch; /* The mean elevation of the Moore neighborhood (9 pixels centered on the crater location). */ /* Perturb the mean elevation by a small random factor. */ int const x = radius >= 1 ? ((pm_rand(randStP) >> 8) & 0x3) - 1 : 0; assert(axelev > 0); setElev(pamP, terrain, cx, cy, axelev + x); } } static unsigned int meanElev(struct pam * const pamP, tuple ** const terrain, int const cx, int const cy, double const radius) { /*---------------------------------------------------------------------------- The mean elevation in 'terrain', which is described by *pamP, within 'radius' pixels vertically and horizontally of (cx, cy). We assume the area is a fraction the whole 'terrain'. -----------------------------------------------------------------------------*/ unsigned int amptot; unsigned int npatch; int y; for (y = cy - radius, amptot = 0, npatch = 0; y <= cy + radius; ++y) { int x; for (x = cx - radius; x <= cx + radius; ++x) { amptot += terrainMod(pamP, terrain, x, y); ++npatch; } } assert(npatch > 0); return amptot / npatch; } static void normalCrater(struct pam * const pamP, tuple ** const terrain, int const cx, int const cy, double const radius) { /*---------------------------------------------------------------------------- Generate a regular (not tiny) crater. Generate an impact feature of the correct size and shape. ----------------------------------------------------------------------------*/ int const impactRadius = (int) MAX(2, (radius / 3)); int const craterRadius = (int) radius; double const rollmin = 0.9; int y; unsigned int const axelev = meanElev(pamP, terrain, cx, cy, impactRadius); /* The mean elevation of the impact area, before impact */ for (y = cy - craterRadius; y <= cy + craterRadius; ++y) { int const dysq = SQR(cy - y); int x; for (x = cx - craterRadius; x <= cx + craterRadius; ++x) { int const dxsq = SQR(cx - x); double const cd = (dxsq + dysq) / (double) SQR(craterRadius); double const cd2 = cd * 2.25; double const tcz = sqrt(DepthBias2) - sqrt(fabs(1 - cd2)); double cz; double roll; cz = MAX((cd2 > 1) ? 0.0 : -10, tcz); /* Initial value */ cz *= pow(craterRadius, CdepthPower); if (dysq == 0 && dxsq == 0 && ((int) cz) == 0) { cz = cz < 0 ? -1 : 1; } roll = (((1 / (1 - MIN(rollmin, cd))) / (1 / (1 - rollmin))) - (1 - rollmin)) / rollmin; { unsigned int av; av = (axelev + cz) * (1 - roll) + (terrainMod(pamP, terrain, x, y) + cz) * roll; av = MAX(1000, MIN(64000, av)); setElev(pamP, terrain, x, y, av); } } } } /* We should also have largeCrater() */ static void plopCrater(struct pam * const pamP, tuple ** const terrain, int const cx, int const cy, double const radius, bool const verbose, struct pm_randSt * const randStP) { if (verbose && pm_have_float_format()) pm_message("Plopping crater at (%4d, %4d) with radius %g", cx, cy, radius); if (radius < 3) smallCrater (pamP, terrain, cx, cy, radius, randStP); else normalCrater(pamP, terrain, cx, cy, radius); } static void initCanvas(unsigned int const width, unsigned int const height, struct pam * const pamP, tuple *** const terrainP) { /*---------------------------------------------------------------------------- Initialize the output image to a flat area of middle elevation. -----------------------------------------------------------------------------*/ tuple ** terrain; /* elevation array */ unsigned int row; pamP->size = sizeof(*pamP); pamP->len = PAM_STRUCT_SIZE(tuple_type); pamP->file = stdout; pamP->format = PAM_FORMAT; pamP->height = height; pamP->width = width; pamP->depth = 1; pamP->maxval = 65535; pamP->bytes_per_sample = 2; STRSCPY(pamP->tuple_type, "elevation"); terrain = pnm_allocpamarray(pamP); for (row = 0; row < pamP->height; ++row) { unsigned int col; for (col = 0; col < pamP->width; ++col) terrain[row][col][0] = pamP->maxval / 2; } *terrainP = terrain; } static void genCraters(struct CmdlineInfo const cmdline) { /*---------------------------------------------------------------------------- Generate cratered terrain -----------------------------------------------------------------------------*/ tuple ** terrain; /* elevation array */ struct pam pam; struct pm_randSt randSt; /* Allocate the elevation array and initialize it to mean surface elevation. */ initCanvas(cmdline.width, cmdline.height, &pam, &terrain); pm_randinit(&randSt); pm_srand2(&randSt, cmdline.randomseedSpec, cmdline.randomseed); if (cmdline.test) plopCrater(&pam, terrain, pam.width/2 + cmdline.offset, pam.height/2 + cmdline.offset, (double) cmdline.radius, cmdline.verbose, &randSt); else { unsigned int const ncraters = cmdline.number; /* num of craters */ unsigned int l; for (l = 0; l < ncraters; ++l) { int const cx = cast((double) pam.width - 1, &randSt); int const cy = cast((double) pam.height - 1, &randSt); /* Thanks, Rudy, for this equation that maps the uniformly distributed numbers from cast() into an area-law distribution as observed on cratered bodies. Produces values within the interval: 0.56419 <= radius <= 56.419 */ double const radius = sqrt(1 / (M_PI * (1 - cast(0.9999, &randSt)))); plopCrater(&pam, terrain, cx, cy, radius, cmdline.verbose, &randSt); if (((l + 1) % 100000) == 0) pm_message("%u craters generated of %u (%u%% done)", l + 1, ncraters, ((l + 1) * 100) / ncraters); } } pm_randterm(&randSt); pnm_writepam(&pam, terrain); pnm_freepamarray(terrain, &pam); pm_close(stdout); } int main(int argc, const char ** argv) { struct CmdlineInfo cmdline; pm_proginit(&argc, argv); parseCommandLine(argc, argv, &cmdline); genCraters(cmdline); return 0; }