/*============================================================================= ppmdither =============================================================================== By Bryan Henderson, July 2006. Contributed to the public domain. This is meant to replace Ppmdither by Christos Zoulas, 1991. =============================================================================*/ #include #include "pm_c_util.h" #include "mallocvar.h" #include "nstring.h" #include "shhopt.h" #include "pam.h" /* Besides having to have enough memory available, the limiting factor in the dithering matrix power is the size of the dithering value. We need 2*dith_power bits in an unsigned int. We also reserve one bit to give headroom to do calculations with these numbers. */ #define MAX_DITH_POWER (((unsigned)sizeof(unsigned int)*8 - 1) / 2) struct ColorResolution { unsigned int c[3]; /* comp[PAM_RED_PLANE] is number of distinct red levels, etc. */ }; #define RED PAM_RED_PLANE #define GRN PAM_GRN_PLANE #define BLU PAM_BLU_PLANE struct CmdlineInfo { /* All the information the user supplied in the command line, in a form easy for the program to use. */ const char * inputFileName; /* File name of input file */ unsigned int dim; struct ColorResolution colorRes; unsigned int verbose; }; static void parseCommandLine(int argc, const char ** const argv, struct CmdlineInfo * const cmdlineP) { /*---------------------------------------------------------------------------- parse program command line described in Unix standard form by argc and argv. Return the information in the options as *cmdlineP. If command line is internally inconsistent (invalid options, etc.), issue error message to stderr and abort program. Note that the strings we return are stored in the storage that was passed to us as the argv array. We also trash *argv. -----------------------------------------------------------------------------*/ optEntry * option_def; /* Instructions to pm_optParseOptions3 on how to parse our options. */ optStruct3 opt; unsigned int option_def_index; unsigned int dimSpec, redSpec, greenSpec, blueSpec; MALLOCARRAY_NOFAIL(option_def, 100); option_def_index = 0; /* incremented by OPTENT3 */ OPTENT3(0, "dim", OPT_UINT, &cmdlineP->dim, &dimSpec, 0); OPTENT3(0, "red", OPT_UINT, &cmdlineP->colorRes.c[RED], &redSpec, 0); OPTENT3(0, "green", OPT_UINT, &cmdlineP->colorRes.c[GRN], &greenSpec, 0); OPTENT3(0, "blue", OPT_UINT, &cmdlineP->colorRes.c[BLU], &blueSpec, 0); OPTENT3(0, "verbose", OPT_FLAG, NULL, &cmdlineP->verbose, 0); opt.opt_table = option_def; opt.short_allowed = FALSE; /* We have no short (old-fashioned) options */ opt.allowNegNum = FALSE; /* We have no parms that are negative numbers */ pm_optParseOptions3(&argc, (char **)argv, opt, sizeof(opt), 0); /* Uses and sets argc, argv, and some of *cmdline_p and others. */ if (!dimSpec) cmdlineP->dim = 4; if (cmdlineP->dim > MAX_DITH_POWER) pm_error("Dithering matrix power %u (-dim) is too large. " "Must be <= %u", cmdlineP->dim, MAX_DITH_POWER); if (redSpec) { if (cmdlineP->colorRes.c[RED] < 2) pm_error("-red must be at least 2. You specified %u", cmdlineP->colorRes.c[RED]); } else cmdlineP->colorRes.c[RED] = 5; if (greenSpec) { if (cmdlineP->colorRes.c[GRN] < 2) pm_error("-green must be at least 2. You specified %u", cmdlineP->colorRes.c[GRN]); } else cmdlineP->colorRes.c[GRN] = 9; if (blueSpec) { if (cmdlineP->colorRes.c[BLU] < 2) pm_error("-blue must be at least 2. You specified %u", cmdlineP->colorRes.c[BLU]); } else cmdlineP->colorRes.c[BLU] = 5; if (argc-1 > 1) pm_error("Program takes at most one argument: the input file " "specification. " "You specified %d arguments.", argc-1); if (argc-1 < 1) cmdlineP->inputFileName = "-"; else cmdlineP->inputFileName = argv[1]; } typedef struct { /*---------------------------------------------------------------------------- A scaler object scales a red/green/blue triple, each component having its own maxval, to a tuple having another maxval. That maxval is the same for all three components. The input and output maxvals are characteristic of the scaler. Example: The scaler scales from a red value of 0-3, green value of 0-3, and blue value of 0-1 to a tuple with maxval 255. So you can ask it to scale (1,1,1) and it responds with (85, 85, 255). -----------------------------------------------------------------------------*/ struct ColorResolution colorRes; /* Number of values of each color component possible, i.e. maxval plus 1 */ tuple * out; /* Malloced array that provides the scaled output when indexed by a certain function (see scaler_scale()) of the input red, green, and blue values. */ } Scaler; static tuple * allocScalerMap(unsigned int const size) { /* The tuple row data structure starts with 'size' pointers to the tuples, immediately followed by the 'size' tuples themselves. Each tuple consists of 3 samples. */ unsigned int const depth = 3; unsigned int const bytesPerTuple = depth * sizeof(sample); tuple * map; map = malloc(size * (sizeof(tuple *) + bytesPerTuple)); if (map != NULL) { /* Now we initialize the pointers to the individual tuples to make this a regulation C two dimensional array. */ char * p; unsigned int i; p = (char*) (map + size); /* location of Tuple 0 */ for (i = 0; i < size; ++i) { map[i] = (tuple) p; p += bytesPerTuple; } } return map; } static void scaler_create(sample const outputMaxval, struct ColorResolution const colorRes, Scaler ** const scalerPP) { Scaler * scalerP; unsigned int mapSize; if (UINT_MAX / colorRes.c[RED] / colorRes.c[GRN] / colorRes.c[BLU] < 1) pm_error("red/green/blue dimensions %u/%u/%u is uncomputably large", colorRes.c[RED], colorRes.c[GRN], colorRes.c[BLU]); { unsigned int plane; for (plane = 0, mapSize = 1; plane < 3; ++plane) mapSize *= colorRes.c[plane]; } MALLOCVAR_NOFAIL(scalerP); scalerP->colorRes = colorRes; scalerP->out = allocScalerMap(mapSize); if (scalerP->out == NULL) pm_error("Unable to allocate memory for %u colors " "(%u red x %u green x %u blue)", mapSize, colorRes.c[RED], colorRes.c[GRN], colorRes.c[BLU]); { unsigned int r; for (r = 0; r < colorRes.c[RED]; ++r) { unsigned int g; for (g = 0; g < colorRes.c[GRN]; ++g) { unsigned int b; for (b = 0; b < colorRes.c[BLU]; ++b) { unsigned int const index = (r * colorRes.c[GRN] + g) * colorRes.c[BLU] + b; tuple const t = scalerP->out[index]; t[PAM_RED_PLANE] = r * outputMaxval / (colorRes.c[RED] - 1); t[PAM_GRN_PLANE] = g * outputMaxval / (colorRes.c[GRN] - 1); t[PAM_BLU_PLANE] = b * outputMaxval / (colorRes.c[BLU] - 1); } } } } *scalerPP = scalerP; } static void scaler_destroy(Scaler * const scalerP) { free(scalerP->out); free(scalerP); } static tuple scaler_scale(const Scaler * const scalerP, unsigned int const red, unsigned int const grn, unsigned int const blu) { unsigned int const index = ((red * scalerP->colorRes.c[GRN]) + grn) * scalerP->colorRes.c[BLU] + blu; assert(red < scalerP->colorRes.c[RED]); assert(grn < scalerP->colorRes.c[GRN]); assert(blu < scalerP->colorRes.c[BLU]); return scalerP->out[index]; } static unsigned int dither(sample const p, sample const maxval, unsigned int const d, unsigned int const ditheredMaxval, unsigned int const ditherMatrixArea) { /*---------------------------------------------------------------------------- Return the dithered brightness for a component of a pixel whose real brightness for that component is 'p' based on a maxval of 'maxval'. The returned brightness is based on a maxval of ditheredMaxval. 'd' is the entry in the dithering matrix for the position of this pixel within the dithered square. 'ditherMatrixArea' is the area (number of pixels in) the dithered square. -----------------------------------------------------------------------------*/ unsigned int const ditherSquareMaxval = ditheredMaxval * ditherMatrixArea; /* This is the maxval for an intensity that an entire dithered square can represent. */ unsigned int const pScaled = ditherSquareMaxval * p / maxval; /* This is the input intensity P expressed with a maxval of 'ditherSquareMaxval' */ /* Now we scale the intensity back down to the 'ditheredMaxval', and as that will involve rounding, we round up or down based on the position in the dithered square, as determined by 'd' */ return (pScaled + d) / ditherMatrixArea; } static unsigned int dithValue(unsigned int const yArg, unsigned int const xArg, unsigned int const dithPower) { /*---------------------------------------------------------------------------- Return the value of a dither matrix which is 2 ** dithPower elements square at Row x, Column y. [graphics gems, p. 714] -----------------------------------------------------------------------------*/ unsigned int d; /* Think of d as the density. At every iteration, d is shifted left one and a new bit is put in the low bit based on x and y. If x is odd and y is even, or visa versa, then a bit is shifted in. This generates the checkerboard pattern seen in dithering. This quantity is shifted again and the low bit of y is added in. This whole thing interleaves a checkerboard pattern and y's bits which is what you want. */ unsigned int x, y; unsigned int i; for (i = 0, d = 0, x = xArg, y = yArg; i < dithPower; ++i, x >>= 1, y >>= 1) d = (d << 2) | (((x & 1) ^ (y & 1)) << 1) | (y & 1); return d; } static unsigned int ** newDithMatrix(unsigned int const dithPower) { /*---------------------------------------------------------------------------- Create the dithering matrix for dimension 'dithDim'. Return it in newly malloc'ed storage. Note that we assume 'dithPower' is not greater than the number of bits in an unsigned int. -----------------------------------------------------------------------------*/ unsigned int const dithDim = 1 << dithPower; unsigned int ** dithMat; unsigned int y; assert(dithPower < sizeof(unsigned int) * 8); MALLOCARRAY(dithMat, dithDim); if (!dithMat) pm_error("Cannot allocate %u-row dithering matrix index", dithDim); else { for (y = 0; y < dithDim; ++y) { MALLOCARRAY(dithMat[y], dithDim); if (!dithMat[y]) pm_error("Failed to allocate %uth row of " "%ux%u dithering matrix", y, dithDim, dithDim); else { unsigned int x; for (x = 0; x < dithDim; ++x) dithMat[y][x] = dithValue(y, x, dithPower); } } } return dithMat; } static void freeDithMatrix(unsigned int ** const dithMat, unsigned int const dithPower) { unsigned int const dithDim = 1 << dithPower; unsigned int y; for (y = 0; y < dithDim; ++y) free(dithMat[y]); free(dithMat); } static void validateNoDitherOverflow(unsigned int const ditherMatrixArea, struct pam * const inpamP, struct ColorResolution const colorRes) { /*---------------------------------------------------------------------------- Validate that we'll be able to do the dithering calculations based on the parameters above without busting out of an integer. -----------------------------------------------------------------------------*/ unsigned int maxDitherMaxval; unsigned int plane; for (plane = 0, maxDitherMaxval = 1; plane < 0; ++plane) { assert(colorRes.c[plane] >= 2); maxDitherMaxval = MAX(maxDitherMaxval, colorRes.c[plane]-1); } if (UINT_MAX / ditherMatrixArea / inpamP->maxval / maxDitherMaxval < 1) pm_error("Numbers are too large to compute. You must reduce " "the dither power, the input maxval, or the number of " "component levels in the output"); } static void ditherRow(struct pam * const inpamP, const tuple * const inrow, const Scaler * const scalerP, unsigned int ** const ditherMatrix, unsigned int const ditherMatrixArea, struct ColorResolution const colorRes, unsigned int const row, unsigned int const modMask, struct pam * const outpamP, tuple * const outrow) { unsigned int col; for (col = 0; col < inpamP->width; ++col) { unsigned int const d = ditherMatrix[row & modMask][(inpamP->width-col-1) & modMask]; unsigned int dithered[3]; unsigned int plane; assert(inpamP->depth >= 3); for (plane = 0; plane < 3; ++plane) dithered[plane] = dither(inrow[col][plane], inpamP->maxval, d, colorRes.c[plane]-1, ditherMatrixArea); pnm_assigntuple(outpamP, outrow[col], scaler_scale(scalerP, dithered[PAM_RED_PLANE], dithered[PAM_GRN_PLANE], dithered[PAM_BLU_PLANE])); } } static void ditherImage(struct pam * const inpamP, const Scaler * const scalerP, unsigned int const dithPower, struct ColorResolution const colorRes, struct pam * const outpamP, tuple *** const outTuplesP) { unsigned int const dithDim = 1 << dithPower; unsigned int const ditherMatrixArea = SQR(dithDim); unsigned int const modMask = (dithDim - 1); /* And this into N to compute N % dithDim cheaply, since we know (though the compiler doesn't) that dithDim is a power of 2 */ unsigned int ** const ditherMatrix = newDithMatrix(dithPower); tuple * inrow; tuple ** outTuples; unsigned int row; struct pam ditherPam; /* Describes the tuples that ditherRow() sees */ assert(dithPower < sizeof(unsigned int) * 8); assert(UINT_MAX / dithDim >= dithDim); validateNoDitherOverflow(ditherMatrixArea, inpamP, colorRes); inrow = pnm_allocpamrow(inpamP); outTuples = pnm_allocpamarray(outpamP); /* We will modify the input to promote it to depth 3 */ ditherPam = *inpamP; ditherPam.depth = 3; for (row = 0; row < inpamP->height; ++row) { pnm_readpamrow(inpamP, inrow); pnm_makerowrgb(inpamP, inrow); ditherRow(&ditherPam, inrow, scalerP, ditherMatrix, ditherMatrixArea, colorRes, row, modMask, outpamP, outTuples[row]); } freeDithMatrix(ditherMatrix, dithPower); pnm_freepamrow(inrow); *outTuplesP = outTuples; } int main(int argc, const char ** argv) { struct CmdlineInfo cmdline; FILE * ifP; tuple ** outTuples; /* Output image */ Scaler * scalerP; struct pam inpam; struct pam outpam; pm_proginit(&argc, argv); parseCommandLine(argc, argv, &cmdline); ifP = pm_openr(cmdline.inputFileName); pnm_readpaminit(ifP, &inpam, PAM_STRUCT_SIZE(allocation_depth)); pnm_setminallocationdepth(&inpam, 3); outpam.size = sizeof(outpam); outpam.len = PAM_STRUCT_SIZE(tuple_type); outpam.file = stdout; outpam.width = inpam.width; outpam.height = inpam.height; outpam.depth = 3; outpam.maxval = pm_lcm(cmdline.colorRes.c[RED]-1, cmdline.colorRes.c[GRN]-1, cmdline.colorRes.c[BLU]-1, PPM_MAXMAXVAL); outpam.bytes_per_sample = inpam.bytes_per_sample; STRSCPY(outpam.tuple_type, "RGB"); outpam.format = RPPM_FORMAT; outpam.plainformat = false; scaler_create(outpam.maxval, cmdline.colorRes, &scalerP); ditherImage(&inpam, scalerP, cmdline.dim, cmdline.colorRes, &outpam, &outTuples); pnm_writepam(&outpam, outTuples); scaler_destroy(scalerP); pnm_freepamarray(outTuples, &outpam); pm_close(ifP); return 0; }