#include #include #include #include #include #include "netpbm/pam.h" #include "netpbm/pm_gamma.h" #include "netpbm/nstring.h" #include "netpbm/ppm.h" #include "shhopt.h" #include "mallocvar.h" /* ----------------------------- Type aliases ------------------------------ */ typedef unsigned char uchar; typedef unsigned int uint; typedef struct pam pam; typedef struct { /*---------------------------------------------------------------------------- An RGB triple, in linear intensity or linear brightness; user's choice. -----------------------------------------------------------------------------*/ double _[3]; } Rgb; typedef struct { /*---------------------------------------------------------------------------- A quadratic polynomial -----------------------------------------------------------------------------*/ double coeff[3]; } Polynomial; typedef struct { /*---------------------------------------------------------------------------- A set of source or target sample values, in some plane. These are either intensity-linear or brightness-linear; user's choice. There could be two or three values; user must know which. -----------------------------------------------------------------------------*/ double _[3]; } SampleSet; /* ------------------------- Parse transformations ------------------------- */ typedef struct { /*---------------------------------------------------------------------------- A mapping of one source color to one target color, encoded in linear RGB -----------------------------------------------------------------------------*/ tuplen from; tuplen to; } Trans; typedef struct { const char * from; /* color specifications */ const char * to; /* as they appear on commandline */ unsigned int hasFrom; /* "from" part is present */ unsigned int hasTo; /* "to" part is present */ char nameFromS[3]; /* short option name */ char nameToS [3]; char nameFromL[6]; /* long option name */ char nameToL [6]; } TransArg; typedef struct { TransArg _[3]; } TransArgSet; typedef struct { unsigned int n; /* Number of elements in 't', 2 for linear transformation; 3 for quadratic. */ Trans t[3]; } TransSet; typedef struct { unsigned int linear; unsigned int fitbrightness; TransSet xlats; /* color mappings (-from1, -to1, etc.) */ const char * inputFileName; /* the input file name, "-" for stdin */ } CmdlineInfo; static void optAddTrans (optEntry * const option_def, unsigned int * const option_def_indexP, TransArg * const xP, char const index) { char indexc; uint option_def_index; option_def_index = *option_def_indexP; indexc = '0' + index; STRSCPY(xP->nameFromL, "from "); xP->nameFromL[4] = indexc; STRSCPY(xP->nameToL, "to " ); xP->nameToL [2] = indexc; STRSCPY(xP->nameFromS, "f " ); xP->nameFromS[1] = indexc; STRSCPY(xP->nameToS, "t " ); xP->nameToS [1] = indexc; OPTENT3(0, xP->nameFromL, OPT_STRING, &xP->from, &xP->hasFrom, 0); OPTENT3(0, xP->nameFromS, OPT_STRING, &xP->from, &xP->hasFrom, 0); OPTENT3(0, xP->nameToL, OPT_STRING, &xP->to, &xP->hasTo, 0); OPTENT3(0, xP->nameToS, OPT_STRING, &xP->to, &xP->hasTo, 0); *option_def_indexP = option_def_index; } static void parseColor(const char * const text, tuplen * const colorP) { /*---------------------------------------------------------------------------- Parses color secification in , converts it into linear RGB, and stores the result in . -----------------------------------------------------------------------------*/ const char * const lastsc = strrchr(text, ':'); const char * colorname; double mul; tuplen unmultipliedColor; tuplen color; if (lastsc) { /* Specification contains a colon. It might be the colon that introduces the optional multiplier, or it might just be the colon after the type specifier, e.g. "rgbi:...". */ if (strstr(text, "rgb") == text && strchr(text, ':') == lastsc) { /* The only colon present is the one on the type specifier. So there is no multiplier. */ mul = 1.0; colorname = pm_strdup(text); } else { /* There is a multiplier (possibly invalid, though). */ const char * const mulstart = lastsc + 1; char * endP; char colorbuf[50]; errno = 0; mul = strtod(mulstart, &endP); if (errno != 0 || endP == mulstart) pm_error("Invalid sample multiplier: '%s'", mulstart); strncpy(colorbuf, text, lastsc - text); colorbuf[lastsc - text] = '\0'; colorname = pm_strdup(colorbuf); } } else { mul = 1.0; colorname = pm_strdup(text); } unmultipliedColor = pnm_parsecolorn(colorname); pm_strfree(colorname); MALLOCARRAY_NOFAIL(color, 3); { /* Linearize and apply multiplier */ unsigned int i; for (i = 0; i < 3; ++i) color[i] = pm_ungamma709(unmultipliedColor[i]) * mul; } free(unmultipliedColor); *colorP = color; } static void parseTran (TransArg const transArg, Trans * const rP) { parseColor(transArg.from, &rP->from); parseColor(transArg.to, &rP->to); } static void calcTrans(TransArgSet const transArgs, TransSet * const transP) { /*---------------------------------------------------------------------------- Interpret transformation option (-from1, etc.) values 'transArg' as transformations, *transP. -----------------------------------------------------------------------------*/ unsigned int xi; for (transP->n = 0, xi = 0; xi < 3; ++xi) { const TransArg * const xformP = &transArgs._[xi]; if (xformP->hasFrom || xformP->hasTo) { if (!xformP->hasFrom || !xformP->hasTo) pm_error("Mapping %u incompletely specified - " "you specified -fromN or -toN but not the other", xi + 1); parseTran(*xformP, &transP->t[transP->n++]); } } if (transP->n < 2) pm_error("You must specify at least two mappings with " "-from1, -to1, etc. You specified %u", transP->n); } static void parseCommandLine(int argc, const char ** argv, CmdlineInfo * const cmdlineP) { /*---------------------------------------------------------------------------- Parse program command line described in Unix standard form by argc and argv. Return the information in the options as *cmdlineP. If command line is internally inconsistent (invalid options, etc.), issue error message to stderr and abort program. Note that the strings we return are stored in the storage that was passed to us as the argv array. We also trash *argv. -----------------------------------------------------------------------------*/ optEntry * option_def; /* Instructions to pm_optParseOptions3 on how to parse our options. */ optStruct3 opt; unsigned int option_def_index; TransArgSet xlations; /* color mapping as read from command line */ MALLOCARRAY_NOFAIL(option_def, 100); option_def_index = 0; /* incremented by OPTENT3 */ OPTENT3(0, "fitbrightness", OPT_FLAG, NULL, &cmdlineP->fitbrightness, 0); OPTENT3(0, "linear", OPT_FLAG, NULL, &cmdlineP->linear, 0); { unsigned int i; for (i = 0; i < 3; ++i) optAddTrans(option_def, &option_def_index, &xlations._[i], i + 1); } opt.opt_table = option_def; opt.short_allowed = 0; opt.allowNegNum = 0; pm_optParseOptions3(&argc, (char **)argv, opt, sizeof(opt), 0); if (cmdlineP->linear && cmdlineP->fitbrightness) { pm_error("You cannot use -linear and -fitbrightness together"); /* Note: It actually makes sense to use them together; we're just not willing to put the effort into something it's unlikely anyone will want. */ } calcTrans(xlations, &cmdlineP->xlats); if (argc-1 < 1) cmdlineP->inputFileName = "-"; else { cmdlineP->inputFileName = argv[1]; if (argc-1 > 1) pm_error("Too many arguments. " "The only possible non-option argument " "is the input file name"); } free(option_def); } static void errResolve(void) { pm_error( "Cannot resolve the transformations"); } static double sqr(double const x) { return x * x; } static void solveOnePlane(SampleSet const f, SampleSet const t, unsigned int const n, Polynomial * const solutionP) { /*---------------------------------------------------------------------------- Find the transformation that maps f[i] to t[i] for 0 <= i < n. -----------------------------------------------------------------------------*/ double const eps = 0.00001; double a, b, c; /* I have decided against generic methods of solving systems of linear equations in favour of simple explicit formulas, with no memory allocation and tedious matrix processing. */ switch (n) { case 3: { double const aDenom = sqr( f._[0] ) * ( f._[1] - f._[2] ) - sqr( f._[2] ) * ( f._[1] - f._[0] ) - sqr( f._[1] ) * ( f._[0] - f._[2] ); if (fabs(aDenom) < eps) errResolve(); a = (t._[1] * (f._[2] - f._[0]) - t._[0] * (f._[2] - f._[1]) - t._[2] * (f._[1] - f._[0])) / aDenom; } break; case 2: a = 0.0; break; default: a = 0.0; /* to avoid a warning that "may be uninitialized". */ pm_error("INTERNAL ERROR: solve(): impossible value of n: %u", n); } { double const bDenom = f._[1] - f._[0]; if (fabs(bDenom) < eps) errResolve(); b = (t._[1] - t._[0] + a * (sqr(f._[0]) - sqr(f._[1]))) / bDenom; } c = -a * sqr(f._[0]) - b * f._[0] + t._[0]; solutionP->coeff[0] = a; solutionP->coeff[1] = b; solutionP->coeff[2] = c; } static void chanData(TransSet const ta, bool const fittingBrightness, unsigned int const plane, SampleSet * const fromP, SampleSet * const toP) { /*---------------------------------------------------------------------------- Collate transformations from 'ta' for plane 'plane'. -----------------------------------------------------------------------------*/ unsigned int i; for (i = 0; i < ta.n; ++i) { if (fittingBrightness) { /* working with gamma-compressed values */ fromP->_[i] = pm_gamma709(ta.t[i].from[plane]); toP-> _[i] = pm_gamma709(ta.t[i].to [plane]); } else { /* working in linear RGB */ fromP->_[i] = ta.t[i].from[plane]; toP-> _[i] = ta.t[i].to [plane]; } } } typedef struct { Polynomial _[3]; /* One per plane */ } Solution; static void solveFmCmdlineOpts(CmdlineInfo const cmdline, unsigned int const depth, Solution * const solutionP) { /*---------------------------------------------------------------------------- Compute the function that will transform the tuples, based on what the user requested ('cmdline'). The function takes intensity-linear tuples for the normal levels function, or brightness-linear for the brightness approximation levels function. The transformed image has 'depth' planes. -----------------------------------------------------------------------------*/ unsigned int plane; SampleSet from, to; /* This initialization to bypass the "may be uninitialized" warning: */ to ._[0] = 0; to. _[1] = 0; to ._[2] = 0; from._[0] = 1; from._[1] = 0; from._[2] = 0; for (plane = 0; plane < depth; ++plane) { chanData(cmdline.xlats, cmdline.fitbrightness, plane, &from, &to); solveOnePlane(from, to, cmdline.xlats.n, &solutionP->_[plane]); } } static samplen xformedSample(samplen const value, Polynomial const polynomial) { /*---------------------------------------------------------------------------- 'sample' transformed by 'polynomial'. -----------------------------------------------------------------------------*/ double const res = (polynomial.coeff[0] * value + polynomial.coeff[1]) * value + polynomial.coeff[2]; return MAX(0.0f, MIN(1.0f, res)); } static void pamlevels(CmdlineInfo const cmdline) { unsigned int row; pam inPam, outPam; Solution solution; tuplen * tuplerown; FILE * ifP; ifP = pm_openr(cmdline.inputFileName); pnm_readpaminit(ifP, &inPam, PAM_STRUCT_SIZE(tuple_type)); outPam = inPam; outPam.file = stdout; solveFmCmdlineOpts(cmdline, inPam.depth, &solution); tuplerown = pnm_allocpamrown(&inPam); pnm_writepaminit(&outPam); for (row = 0; row < inPam.height; ++row) { unsigned int col; pnm_readpamrown(&inPam, tuplerown); if (!cmdline.linear && !cmdline.fitbrightness) pnm_ungammarown(&inPam, tuplerown); for (col = 0; col < inPam.width; ++col) { unsigned int plane; for (plane = 0; plane < inPam.depth; ++plane) { tuplerown[col][plane] = xformedSample(tuplerown[col][plane], solution._[plane]); } } if (!cmdline.linear && !cmdline.fitbrightness) pnm_gammarown(&inPam, tuplerown); pnm_writepamrown(&outPam, tuplerown); } pnm_freepamrown(tuplerown); pm_close(ifP); } static void freeCmdLineInfo(CmdlineInfo cmdline) { /*---------------------------------------------------------------------------- Free any memory that has been dynamically allocated in . -----------------------------------------------------------------------------*/ TransSet * const xxP = &cmdline.xlats; uint x; for (x = 0; x < xxP->n; ++x) { free(xxP->t[x].from); free(xxP->t[x].to); } } int main(int argc, const char * argv[]) { CmdlineInfo cmdline; pm_proginit(&argc, argv); parseCommandLine(argc, argv, &cmdline); pamlevels(cmdline); freeCmdLineInfo(cmdline); return 0; }