/*============================================================================= pamcomp =============================================================================== This program composes two images together, with optional translucence. This program is derived from (and replaces) Pnmcomp, whose origin is as follows: Copyright 1992, David Koblas. Permission to use, copy, modify, and distribute this software and its documentation for any purpose and without fee is hereby granted, provided that the above copyright notice appear in all copies and that both that copyright notice and this permission notice appear in supporting documentation. This software is provided "as is" without express or implied warranty. No code from the original remains in the present version. The January 2004 version was coded entirely by Bryan Henderson. Bryan has contributed his work to the public domain. The current version is derived from the January 2004 version, with additional work by multiple authors. =============================================================================*/ #define _DEFAULT_SOURCE /* New name for SVID & BSD source defines */ #define _BSD_SOURCE /* Make sure strcaseeq() is in nstring.h */ #include #include #include #include "pm_c_util.h" #include "mallocvar.h" #include "nstring.h" #include "shhopt.h" #include "pm_gamma.h" #include "pam.h" enum horizPos {BEYONDLEFT, LEFT, CENTER, RIGHT, BEYONDRIGHT}; enum vertPos {ABOVE, TOP, MIDDLE, BOTTOM, BELOW}; enum sampleScale {INTENSITY_SAMPLE, GAMMA_SAMPLE}; /* This indicates a scale for a PAM sample value. INTENSITY_SAMPLE means the value is proportional to light intensity; GAMMA_SAMPLE means the value is gamma-adjusted as defined in the PGM/PPM spec. In both scales, the values are continuous and normalized to the range 0..1. This scale has no meaning if the PAM is not a visual image. */ enum alphaMix {AM_KEEPUNDER, AM_OVERLAY}; /* This is a way to combine the alpha channels (transparency/opacity) of the underlay and overlay images to form the alpha channel of the composed result. AM_KEEPUNDER means the alpha for the composed result is identical to that of the underlay image. I.e. the overlay merely modifies the color. AM_OVERLAY means the result is as if the underlay and overlay images are plastic slides and they are taped together to form a composed slide. So for one thing, the transparency of the composed image is the product of the transparencies of the component images. But the color is also different, because the transparency of the underlaying image affects its contribution to the composition. */ struct CmdlineInfo { /* All the information the user supplied in the command line, in a form easy for the program to use. */ const char *underlyingFilespec; /* '-' if stdin */ const char *overlayFilespec; const char *alphaFilespec; const char *outputFilespec; /* '-' if stdout */ int xoff, yoff; /* value of xoff, yoff options */ float opacity; unsigned int alphaInvert; enum horizPos align; enum vertPos valign; unsigned int linear; unsigned int mixtransparency; }; static void parseCommandLine(int argc, const char ** argv, struct CmdlineInfo * const cmdlineP ) { /*---------------------------------------------------------------------------- Parse program command line described in Unix standard form by argc and argv. Return the information in the options as *cmdlineP. If command line is internally inconsistent (invalid options, etc.), issue error message to stderr and abort program. Note that the strings we return are stored in the storage that was passed to us as the argv array. We also trash *argv. -----------------------------------------------------------------------------*/ optEntry *option_def; /* Instructions to pm_optParseOptions3 on how to parse our options. */ optStruct3 opt; unsigned int option_def_index; char *align, *valign; unsigned int xoffSpec, yoffSpec, alignSpec, valignSpec, opacitySpec, alphaSpec; MALLOCARRAY_NOFAIL(option_def, 100); option_def_index = 0; /* incremented by OPTENT3 */ OPTENT3(0, "invert", OPT_FLAG, NULL, &cmdlineP->alphaInvert, 0); OPTENT3(0, "xoff", OPT_INT, &cmdlineP->xoff, &xoffSpec, 0); OPTENT3(0, "yoff", OPT_INT, &cmdlineP->yoff, &yoffSpec, 0); OPTENT3(0, "opacity", OPT_FLOAT, &cmdlineP->opacity, &opacitySpec, 0); OPTENT3(0, "alpha", OPT_STRING, &cmdlineP->alphaFilespec, &alphaSpec, 0); OPTENT3(0, "align", OPT_STRING, &align, &alignSpec, 0); OPTENT3(0, "valign", OPT_STRING, &valign, &valignSpec, 0); OPTENT3(0, "linear", OPT_FLAG, NULL, &cmdlineP->linear, 0); OPTENT3(0, "mixtransparency", OPT_FLAG, NULL, &cmdlineP->mixtransparency, 0); opt.opt_table = option_def; opt.short_allowed = FALSE; /* We have no short (old-fashioned) options */ opt.allowNegNum = FALSE; /* We have no parms that are negative numbers */ pm_optParseOptions3(&argc, (char **)argv, opt, sizeof(opt), 0); /* Uses and sets argc, argv, and some of *cmdlineP and others. */ if (!xoffSpec) cmdlineP->xoff = 0; if (!yoffSpec) cmdlineP->yoff = 0; if (!alphaSpec) cmdlineP->alphaFilespec = NULL; if (alignSpec) { if (strcaseeq(align, "BEYONDLEFT")) cmdlineP->align = BEYONDLEFT; else if (strcaseeq(align, "LEFT")) cmdlineP->align = LEFT; else if (strcaseeq(align, "CENTER")) cmdlineP->align = CENTER; else if (strcaseeq(align, "RIGHT")) cmdlineP->align = RIGHT; else if (strcaseeq(align, "BEYONDRIGHT")) cmdlineP->align = BEYONDRIGHT; else pm_error("Invalid value for align option: '%s'. Only LEFT, " "RIGHT, CENTER, BEYONDLEFT, and BEYONDRIGHT are valid.", align); } else cmdlineP->align = LEFT; if (valignSpec) { if (strcaseeq(valign, "ABOVE")) cmdlineP->valign = ABOVE; else if (strcaseeq(valign, "TOP")) cmdlineP->valign = TOP; else if (strcaseeq(valign, "MIDDLE")) cmdlineP->valign = MIDDLE; else if (strcaseeq(valign, "BOTTOM")) cmdlineP->valign = BOTTOM; else if (strcaseeq(valign, "BELOW")) cmdlineP->valign = BELOW; else pm_error("Invalid value for valign option: '%s'. Only TOP, " "BOTTOM, MIDDLE, ABOVE, and BELOW are valid.", align); } else cmdlineP->valign = TOP; if (!opacitySpec) cmdlineP->opacity = 1.0; if (argc-1 < 1) pm_error("Need at least one argument: file specification of the " "overlay image."); cmdlineP->overlayFilespec = argv[1]; if (argc-1 >= 2) cmdlineP->underlyingFilespec = argv[2]; else cmdlineP->underlyingFilespec = "-"; if (argc-1 >= 3) cmdlineP->outputFilespec = argv[3]; else cmdlineP->outputFilespec = "-"; if (argc-1 > 3) pm_error("Too many arguments. Only acceptable arguments are: " "overlay image, underlying image, output image"); } static void initAlphaFile(struct CmdlineInfo const cmdline, struct pam * const overlayPamP, FILE ** const filePP, struct pam * const pamP) { FILE * fileP; if (cmdline.alphaFilespec) { fileP = pm_openr(cmdline.alphaFilespec); pamP->comment_p = NULL; pnm_readpaminit(fileP, pamP, PAM_STRUCT_SIZE(opacity_plane)); if (overlayPamP->width != pamP->width || overlayPamP->height != pamP->height) pm_error("Opacity map and overlay image are not the same size"); } else fileP = NULL; *filePP = fileP; } typedef enum { TT_BLACKANDWHITE, TT_GRAYSCALE, TT_RGB } BaseTupletype; static void validateComputableHeight(int const originTop, int const overRows) { if (originTop < 0) { if (originTop < -INT_MAX) pm_error("Overlay starts too far above the underlay image to be " "computable. Overlay can be at most %d rows above " "the underlay.", INT_MAX); } else { if (INT_MAX - originTop <= overRows) pm_error("Too many total rows involved to be computable. " "You must have a shorter overlay image or compose it " "higher on the underlay image."); } } static void warnOutOfFrame(int const originLeft, int const originTop, int const overCols, int const overRows, int const underCols, int const underRows) { if (originLeft >= underCols) pm_message("WARNING: the overlay is entirely off the right edge " "of the underlying image. " "It will not be visible in the result. The horizontal " "overlay position you selected is %d, " "and the underlying image " "is only %d pixels wide.", originLeft, underCols ); else if (originLeft + overCols <= 0) pm_message("WARNING: the overlay is entirely off the left edge " "of the underlying image. " "It will not be visible in the result. The horizontal " "overlay position you selected is %d and the overlay is " "only %d pixels wide.", originLeft, overCols); else if (originTop >= underRows) pm_message("WARNING: the overlay is entirely off the bottom edge " "of the underlying image. " "It will not be visible in the result. The vertical " "overlay position you selected is %d, " "and the underlying image " "is only %d pixels high.", originTop, underRows ); else if (originTop + overRows <= 0) pm_message("WARNING: the overlay is entirely off the top edge " "of the underlying image. " "It will not be visible in the result. The vertical " "overlay position you selected is %d and the overlay is " "only %d pixels high.", originTop, overRows); } static void computeOverlayPosition(int const underCols, int const underRows, int const overCols, int const overRows, struct CmdlineInfo const cmdline, int * const originLeftP, int * const originTopP) { /*---------------------------------------------------------------------------- Determine where to overlay the overlay image, based on the options the user specified and the realities of the image dimensions. The origin may be outside the underlying image (so e.g. *originLeftP may be negative or > image width). That means not all of the overlay image actually gets used. In fact, there may be no overlap at all. But we insist that the span from the topmost row of the two images to the bottommost row be less than INT_MAX so that Caller can use an integer for a row number in the combination. -----------------------------------------------------------------------------*/ int xalign, yalign; switch (cmdline.align) { case BEYONDLEFT: xalign = -overCols; break; case LEFT: xalign = 0; break; case CENTER: xalign = (underCols-overCols)/2; break; case RIGHT: xalign = underCols - overCols; break; case BEYONDRIGHT: xalign = underCols; break; } switch (cmdline.valign) { case ABOVE: yalign = -overRows; break; case TOP: yalign = 0; break; case MIDDLE: yalign = (underRows-overRows)/2; break; case BOTTOM: yalign = underRows - overRows; break; case BELOW: yalign = underRows; break; } *originLeftP = xalign + cmdline.xoff; *originTopP = yalign + cmdline.yoff; validateComputableHeight(*originTopP, overRows); warnOutOfFrame(*originLeftP, *originTopP, overCols, overRows, underCols, underRows); } /*---------------------------------------------------------------------------- COMPOSING TRANSPARENT PIXELS - AM_OVERLAY There are various interpretations of composing transparent pixels, which you can see in the definition of enum alphaMix. For AM_OVERLAY, which means the result is as if the underlaying and overlaying images are plastic slides and we taped them together to make a composed plastic slide, the calculations go as follows. U means color of underlay pixel O means color of overlay pixel C means color of composed pixel X is a variable, standing for U, O, or C X_T means transparency of the X pixel X_O means opacity of the X pixel Opacity and transparency are fractions in [0,1] and are complements: X_T = 1 - X_O We consider a further composed image, where in the future someone projects another image (the background image) through our composed slide. The opacity and color of our composed image must be such that the light emerging (the result image) is the same as if it travelled serially through the underlaying and overlaying slide. The transparency of each slide is the fraction of light that gets through that slide, so the transparency of the composed slide is the product of the underlay and overlay transparencies: C_T = U_T * O_T The composed transparency determines the distribution of background and composed image in the result. We have to choose the composed color such that the result of combining it thus with the background image is the same as the result of combining the background image with the underlay image (distributed according to the underlay transparency), then combining that with the overlay image (distributed according to the overlay transparency). C = (O_T * U_O * U + O_O * O) / C_O if C_O != 0 But this is meaningless if both components are fully transparent, which means composed image opacity (C_O) is zero. In that case, the composed color is irrelevant to the result image and we can choose whatever color is most likely to be convenient in applications that don't use the transparency of the composed image. We choose the pure underlay color. C = U if C_O = 0 function composeComponents() computes the above formula. -----------------------------------------------------------------------------*/ static BaseTupletype commonTupletype(const char * const tupletypeA, const char * const tupletypeB) { if (strneq(tupletypeA, "RGB", 3) || strneq(tupletypeB, "RGB", 3)) return TT_RGB; else if (strneq(tupletypeA, "GRAYSCALE", 9) || strneq(tupletypeB, "GRAYSCALE", 9)) return TT_GRAYSCALE; else if (strneq(tupletypeA, "BLACKANDWHITE", 13) || strneq(tupletypeB, "BLACKANDWHITE", 13)) return TT_BLACKANDWHITE; else /* Results are undefined for this case, so we do a hail Mary. */ return TT_RGB; } static int commonFormat(int const formatA, int const formatB) { /*---------------------------------------------------------------------------- Return a viable format for the result of composing the two formats 'formatA' and 'formatB'. -----------------------------------------------------------------------------*/ int retval; int const typeA = PAM_FORMAT_TYPE(formatA); int const typeB = PAM_FORMAT_TYPE(formatB); if (typeA == PAM_TYPE || typeB == PAM_TYPE) retval = PAM_FORMAT; else if (typeA == PPM_TYPE || typeB == PPM_TYPE) retval = PPM_FORMAT; else if (typeA == PGM_TYPE || typeB == PGM_TYPE) retval = PGM_FORMAT; else if (typeA == PBM_TYPE || typeB == PBM_TYPE) retval = PBM_FORMAT; else { /* Results are undefined for this case, so we do a hail Mary. */ retval = formatA; } return retval; } static void determineOutputTupleType(BaseTupletype const baseTupletype, bool const underlayHaveOpacity, char * const tupleType, size_t const size) { char buffer[80]; switch (baseTupletype) { case TT_BLACKANDWHITE: STRSCPY(buffer, "RGB"); break; case TT_GRAYSCALE: STRSCPY(buffer, "GRAYSCALE"); break; case TT_RGB: STRSCPY(buffer, "RGB"); break; } if (underlayHaveOpacity) STRSCAT(buffer, "_ALPHA"); strncpy(tupleType, buffer, size); } static void determineOutputType(const struct pam * const underlayPamP, const struct pam * const overlayPamP, struct pam * const composedPamP) { BaseTupletype const baseTupletype = commonTupletype(underlayPamP->tuple_type, overlayPamP->tuple_type); composedPamP->height = underlayPamP->height; composedPamP->width = underlayPamP->width; composedPamP->format = commonFormat(underlayPamP->format, overlayPamP->format); composedPamP->plainformat = FALSE; composedPamP->maxval = pm_lcm(underlayPamP->maxval, overlayPamP->maxval, 1, PNM_OVERALLMAXVAL); composedPamP->visual = true; composedPamP->color_depth = (baseTupletype == TT_RGB ? 3 : 1); composedPamP->have_opacity = underlayPamP->have_opacity; composedPamP->opacity_plane = (baseTupletype == TT_RGB ? 3 : 1); composedPamP->depth = (baseTupletype == TT_RGB ? 3 : 1) + (underlayPamP->have_opacity ? 1 : 0); determineOutputTupleType(baseTupletype, underlayPamP->have_opacity, composedPamP->tuple_type, sizeof(composedPamP->tuple_type)); } static void determineInputAdaptations(const struct pam * const underlayPamP, const struct pam * const overlayPamP, const struct pam * const composedPamP, struct pam * const adaptUnderlayPamP, struct pam * const adaptOverlayPamP) { /*---------------------------------------------------------------------------- For easy of computation, this program reads a tuple row from one of the input files, then transforms it something similar to the format of the eventual output tuple row. E.g. if the input is grayscale and the output color, it converts the depth 1 row read from the file to a depth 3 row for use in computations. This function determines what the result of that transformation should be. It's not as simple as it sounds because of opacity. The overlay may have an opacity plane that has to be kept for the computations, while the output has no opacity plane. Our output PAMs are meaningless except in the fields that pertain to a row of tuples. E.g. the file descriptor and image height members are meaningless. -----------------------------------------------------------------------------*/ /* We make the underlay row identical to the composed (output) row, except for its width. */ *adaptUnderlayPamP = *composedPamP; adaptUnderlayPamP->width = underlayPamP->width; /* Same for the overlay row, except that it retains is original opacity. */ adaptOverlayPamP->width = overlayPamP->width; adaptOverlayPamP->tuple_type[0] = '\0'; /* a hack; this doesn't matter */ adaptOverlayPamP->visual = true; adaptOverlayPamP->color_depth = composedPamP->color_depth; adaptOverlayPamP->have_opacity = overlayPamP->have_opacity; adaptOverlayPamP->opacity_plane = composedPamP->color_depth; adaptOverlayPamP->depth = composedPamP->color_depth + (overlayPamP->have_opacity ? 1 : 0); adaptOverlayPamP->maxval = composedPamP->maxval; adaptOverlayPamP->bytes_per_sample = composedPamP->bytes_per_sample; adaptOverlayPamP->allocation_depth = overlayPamP->allocation_depth; } static void adaptRowFormat(struct pam * const inpamP, struct pam * const outpamP, tuple * const tuplerow) { /*---------------------------------------------------------------------------- Convert the row in 'tuplerow', which is in a format described by *inpamP, to the format described by *outpamP. 'tuplerow' must have enough allocated depth to do this. -----------------------------------------------------------------------------*/ assert(outpamP->visual); assert(inpamP->visual); pnm_scaletuplerow(inpamP, tuplerow, tuplerow, outpamP->maxval); if (outpamP->color_depth == 3) { if (outpamP->have_opacity) pnm_makerowrgba(inpamP, tuplerow); else pnm_makerowrgb(inpamP, tuplerow); } else { if (outpamP->have_opacity) pnm_addopacityrow(inpamP, tuplerow); } } static sample composeComponents(sample const compA, sample const compB, float const distrib, float const bFactor, float const composedFactor, sample const maxval, enum sampleScale const sampleScale) { /*---------------------------------------------------------------------------- Compose a single color component of each of two pixels, with 'distrib' being the fraction of 'compA' in the result, 1-distrib the fraction of 'compB'. Note that this function is not useful for an opacity component. 'sampleScale' tells in what domain the 'distrib' fraction applies: brightness or light intensity (gamma-adjusted or not). 'bFactor' is a factor in [0,1] to apply to 'compB' first. 'composedFactor' is a factor to apply to the result. See above for explanation of why 'bFactor' and 'composedFactor' are useful. The inputs and result are based on a maxval of 'maxval'. Note that while 'distrib' in the straightforward case is always in [0,1], it can in fact be negative or greater than 1. We clip the result as required to return a legal sample value. -----------------------------------------------------------------------------*/ sample retval; if (fabs(distrib) > .999 && bFactor > .999 && composedFactor > .999) /* Fast path for common case */ retval = compA; else { if (sampleScale == INTENSITY_SAMPLE) { sample const mix = ROUNDU(compA * distrib + compB * bFactor *(1.0 - distrib)); retval = MIN(maxval, MAX(0, mix)); } else { float const compANormalized = (float)compA/maxval; float const compBNormalized = (float)compB/maxval; float const compALinear = pm_ungamma709(compANormalized); float const compBLinear = pm_ungamma709(compBNormalized); float const compBLinearAdj = compBLinear * bFactor; float const mix = compALinear * distrib + compBLinearAdj * (1.0 - distrib) * composedFactor; sample const sampleValue = pnm_unnormalize(pm_gamma709(mix), maxval); retval = MIN(maxval, MAX(0, sampleValue)); } } return retval; } static sample composedOpacity(tuple const uTuple, struct pam * const uPamP, tuple const oTuple, struct pam * const oPamP, struct pam * const cPamP, enum alphaMix const alphaMix) { sample retval; assert(uPamP->have_opacity); switch (alphaMix) { case AM_OVERLAY: { /* output transparency is product of two input transparencies */ float const underlayTrans = 1.0 - ((float)uTuple[uPamP->opacity_plane]/uPamP->maxval); float const overlayTrans = 1.0 - ((float)oTuple[oPamP->opacity_plane]/oPamP->maxval); float const composedTrans = underlayTrans * overlayTrans; sample const sampleValue = (1.0 - composedTrans) * cPamP->maxval; retval = MIN(cPamP->maxval, MAX(0, sampleValue)); } break; case AM_KEEPUNDER: retval = uTuple[uPamP->opacity_plane]; break; } return retval; } static void overlayPixel(tuple const overlayTuple, struct pam * const overlayPamP, tuple const underlayTuple, struct pam * const underlayPamP, tuplen const alphaTuplen, bool const invertAlpha, tuple const composedTuple, struct pam * const composedPamP, float const masterOpacity, enum sampleScale const sampleScale, enum alphaMix const alphaMix) { /*---------------------------------------------------------------------------- Generate the result of overlaying one pixel with another, taking opacity into account, viz overlaying 'underlayTuple' with 'overlayTuple'. 'overlayPamP' and 'underlayPamP', respectively, describe those tuples. We always assume the underlay pixel is opaque. We use the following declarations of the opacity of the overlay pixel in deciding how much of the underlay pixel should show through. The product of all the indicated opacity factors is the overall opacity factor, where an opacity factor is a real number from 0 to 1 and 1 means none of the underlay pixel shows through and 0 means the overlay pixel is invisible and the underlay pixel shows through in full force. if *overlayPamP may indicate that 'overlayTuple' has an opacity component. 'alphaTuplen' is a normalized tuple whose first sample is the opacity factor, except that iff 'invertAlpha' is true, it is a transparency factor instead (opacity = 1 - transparency). 'masterOpacity' is a direct opacity factor 'sampleScale' tells whether the samples in the tuples are proportional to brightness or light intensity (gamma-adjusted or not). Opacity factors apply to brightness (.5 means half the brightness of the result comes from the underlay pixel, half comes from the overlay). 'alphaMix' tells how to determine the opacity of the result pixel. Return the result as 'composedTuple', which has the form described by 'composedPamP'. -----------------------------------------------------------------------------*/ float overlayWeight; float underlayWeight; /* Part of formula for AM_OVERLAY -- see explanation above */ float composedWeight; /* Part of formula for AM_OVERLAY -- see explanation above */ overlayWeight = masterOpacity; /* initial value */ if (overlayPamP->have_opacity) overlayWeight *= (float) overlayTuple[overlayPamP->opacity_plane] / overlayPamP->maxval; if (alphaTuplen) { float const alphaval = invertAlpha ? (1.0 - alphaTuplen[0]) : alphaTuplen[0]; overlayWeight *= alphaval; } if (underlayPamP->have_opacity && alphaMix == AM_OVERLAY) { struct pam * const uPamP = underlayPamP; struct pam * const oPamP = overlayPamP; sample const uOpacity = underlayTuple[uPamP->opacity_plane]; sample const oOpacity = overlayTuple[oPamP->opacity_plane]; sample const uMaxval = uPamP->maxval; sample const oMaxval = oPamP->maxval; float const uOpacityN = uOpacity / uMaxval; float const oOpacityN = oOpacity / oMaxval; float const composedTrans = (1.0 - uOpacityN) * (1.0 * oOpacityN); if (composedTrans > .999) { underlayWeight = 1.0; composedWeight = 1.0; } else { underlayWeight = uOpacityN; composedWeight = 1.0 / (1.0 - composedTrans); } } else { underlayWeight = 1.0; composedWeight = 1.0; } { unsigned int plane; for (plane = 0; plane < composedPamP->color_depth; ++plane) composedTuple[plane] = composeComponents(overlayTuple[plane], underlayTuple[plane], overlayWeight, underlayWeight, composedWeight, composedPamP->maxval, sampleScale); if (composedPamP->have_opacity) composedTuple[composedPamP->opacity_plane] = composedOpacity(underlayTuple, underlayPamP, overlayTuple, overlayPamP, composedPamP, alphaMix); } } static void composeRow(int const originleft, struct pam * const underlayPamP, struct pam * const overlayPamP, bool const invertAlpha, float const masterOpacity, struct pam * const composedPamP, enum sampleScale const sampleScale, enum alphaMix const alphaMix, const tuple * const underlayTuplerow, const tuple * const overlayTuplerow, const tuplen * const alphaTuplerown, tuple * const composedTuplerow) { /*---------------------------------------------------------------------------- Create a row of tuples ('composedTupleRow') which is the composition of row 'overlayTupleRow' laid over row 'underlayTupleRow', starting at column 'originLeft'. *underlayPamP and *overlayPamP describe the respective tuple rows. -----------------------------------------------------------------------------*/ unsigned int col; for (col = 0; col < composedPamP->width; ++col) { int const ovlcol = col - originleft; if (ovlcol >= 0 && ovlcol < overlayPamP->width) { tuplen const alphaTuplen = alphaTuplerown ? alphaTuplerown[ovlcol] : NULL; overlayPixel(overlayTuplerow[ovlcol], overlayPamP, underlayTuplerow[col], underlayPamP, alphaTuplen, invertAlpha, composedTuplerow[col], composedPamP, masterOpacity, sampleScale, alphaMix); } else /* Overlay image does not touch this column. */ pnm_assigntuple(composedPamP, composedTuplerow[col], underlayTuplerow[col]); } } static void composite(int const originleft, int const origintop, struct pam * const underlayPamP, struct pam * const overlayPamP, struct pam * const alphaPamP, bool const invertAlpha, float const masterOpacity, struct pam * const composedPamP, bool const assumeLinear, bool const mixTransparency) { /*---------------------------------------------------------------------------- Overlay the overlay image in the array 'overlayImage', described by *overlayPamP, onto the underlying image from the input image file as described by *underlayPamP, output the composite to the image file as described by *composedPamP. Apply the overlay image with transparency described by the array 'alpha' and *alphaPamP. The underlying image is positioned after its header. 'originleft' and 'origintop' are the coordinates in the underlying image plane where the top left corner of the overlay image is to go. It is not necessarily inside the underlying image (in fact, may be negative). Only the part of the overlay that actually intersects the underlying image, if any, gets into the output. We assume that the span from the topmost row of the two images to the bottommost row is less than INT_MAX. -----------------------------------------------------------------------------*/ enum sampleScale const sampleScale = assumeLinear ? INTENSITY_SAMPLE : GAMMA_SAMPLE; enum alphaMix const alphaMix = mixTransparency ? AM_OVERLAY : AM_KEEPUNDER; int underlayRow; /* NB may be negative */ int overlayRow; /* NB may be negative */ tuple * composedTuplerow; tuple * underlayTuplerow; struct pam adaptUnderlayPam; tuple * overlayTuplerow; struct pam adaptOverlayPam; tuplen * alphaTuplerown; composedTuplerow = pnm_allocpamrow(composedPamP); underlayTuplerow = pnm_allocpamrow(underlayPamP); overlayTuplerow = pnm_allocpamrow(overlayPamP); if (alphaPamP) alphaTuplerown = pnm_allocpamrown(alphaPamP); else alphaTuplerown = NULL; determineInputAdaptations(underlayPamP, overlayPamP, composedPamP, &adaptUnderlayPam, &adaptOverlayPam); pnm_writepaminit(composedPamP); assert(INT_MAX - overlayPamP->height > origintop); /* arg constraint */ for (underlayRow = MIN(0, origintop), overlayRow = MIN(0, -origintop); underlayRow < MAX(underlayPamP->height, origintop + overlayPamP->height); ++underlayRow, ++overlayRow) { if (overlayRow >= 0 && overlayRow < overlayPamP->height) { pnm_readpamrow(overlayPamP, overlayTuplerow); adaptRowFormat(overlayPamP, &adaptOverlayPam, overlayTuplerow); if (alphaPamP) pnm_readpamrown(alphaPamP, alphaTuplerown); } if (underlayRow >= 0 && underlayRow < underlayPamP->height) { pnm_readpamrow(underlayPamP, underlayTuplerow); adaptRowFormat(underlayPamP, &adaptUnderlayPam, underlayTuplerow); if (underlayRow < origintop || underlayRow >= origintop + overlayPamP->height) { /* Overlay image does not touch this underlay row. */ pnm_writepamrow(composedPamP, underlayTuplerow); } else { composeRow(originleft, &adaptUnderlayPam, &adaptOverlayPam, invertAlpha, masterOpacity, composedPamP, sampleScale, alphaMix, underlayTuplerow, overlayTuplerow, alphaTuplerown, composedTuplerow); pnm_writepamrow(composedPamP, composedTuplerow); } } } pnm_freepamrow(composedTuplerow); pnm_freepamrow(underlayTuplerow); pnm_freepamrow(overlayTuplerow); if (alphaPamP) pnm_freepamrown(alphaTuplerown); } int main(int argc, const char *argv[]) { struct CmdlineInfo cmdline; FILE * underlayFileP; FILE * overlayFileP; FILE * alphaFileP; struct pam underlayPam; struct pam overlayPam; struct pam alphaPam; struct pam composedPam; int originLeft, originTop; pm_proginit(&argc, argv); parseCommandLine(argc, argv, &cmdline); overlayFileP = pm_openr(cmdline.overlayFilespec); overlayPam.comment_p = NULL; pnm_readpaminit(overlayFileP, &overlayPam, PAM_STRUCT_SIZE(opacity_plane)); if (overlayPam.len < PAM_STRUCT_SIZE(opacity_plane)) pm_error("Libnetpbm is too old. This program requires libnetpbm from " "Netpbm 10.56 (September 2011) or newer"); if (!overlayPam.visual) pm_error("Overlay image has tuple type '%s', which is not a " "standard visual type. We don't know how to compose.", overlayPam.tuple_type); initAlphaFile(cmdline, &overlayPam, &alphaFileP, &alphaPam); underlayFileP = pm_openr(cmdline.underlyingFilespec); underlayPam.comment_p = NULL; pnm_readpaminit(underlayFileP, &underlayPam, PAM_STRUCT_SIZE(opacity_plane)); assert(underlayPam.len >= PAM_STRUCT_SIZE(opacity_plane)); if (!overlayPam.visual) pm_error("Overlay image has tuple type '%s', which is not a " "standard visual type. We don't know how to compose.", overlayPam.tuple_type); computeOverlayPosition(underlayPam.width, underlayPam.height, overlayPam.width, overlayPam.height, cmdline, &originLeft, &originTop); composedPam.size = PAM_STRUCT_SIZE(opacity_plane); composedPam.len = PAM_STRUCT_SIZE(allocation_depth); composedPam.allocation_depth = 0; composedPam.file = pm_openw(cmdline.outputFilespec); composedPam.comment_p = NULL; determineOutputType(&underlayPam, &overlayPam, &composedPam); pnm_setminallocationdepth(&underlayPam, composedPam.depth); pnm_setminallocationdepth(&overlayPam, composedPam.depth); composite(originLeft, originTop, &underlayPam, &overlayPam, alphaFileP ? &alphaPam : NULL, cmdline.alphaInvert, cmdline.opacity, &composedPam, cmdline.linear, cmdline.mixtransparency); if (alphaFileP) pm_close(alphaFileP); pm_close(overlayFileP); pm_close(underlayFileP); pm_close(composedPam.file); /* If the program failed, it previously aborted with nonzero completion code, via various function calls. */ return 0; }