/* pbmtoascii.c - read a PBM image and produce ASCII graphics ** ** Copyright (C) 1988, 1992 by Jef Poskanzer. ** ** Permission to use, copy, modify, and distribute this software and its ** documentation for any purpose and without fee is hereby granted, provided ** that the above copyright notice appear in all copies and that both that ** copyright notice and this permission notice appear in supporting ** documentation. This software is provided "as is" without express or ** implied warranty. */ #include #include "mallocvar.h" #include "pbm.h" /* The algorithm is based on describing the 2 or 8 pixels in a cell with a single integer called a signature, which we use as an index into an array to get the character whose glyph best matches those pixels. The encoding is as follows. Make a string of bits, with each bit being one pixel of the cell, 1 = black, 0 = white. The order of the string is left to right across the top row, then the next row down, etc. Considering that string to be a binary cipher, the integer it represents is the signature. Example: the 2x4 cell consists of these pixels: (* = black) * * * * The bit string to represent this is 11100001. So the signature for this cell is the integer 0xE1 (225). You index the array carr2x4 with 0xE1, and get '?' as the character to represent that cell. (We don't really try very hard to match the shape; it's mostly important to match the density). */ #define SQQ '\'' #define BSQ '\\' /* Bit-map for 1x2 mode: ** 1 ** 2 */ static char const carr1x2[4] = { /* 0 1 2 3 */ ' ', '"', 'o', 'M' }; /* Bit-map for 2x4 mode (hex): ** 1 2 ** 4 8 ** 10 20 ** 40 80 ** The idea here is first to preserve geometry, then to show density. */ #define D08 'M' #define D07 'H' #define D06 '&' #define D05 '$' #define D04 '?' static char const carr2x4[256] = { /*0 1 2 3 4 5 6 7 8 9 A B C D E F */ ' ',SQQ, '`','"', '-',SQQ, SQQ,SQQ, '-','`', '`','`', '-','^','^','"',/*00-0F*/ '.',':', ':',':', '|','|', '/',D04, '/','>', '/','>', '~','+','/','*',/*10-1F*/ '.',':', ':',':', BSQ,BSQ, '<','<', '|',BSQ, '|',D04, '~',BSQ,'+','*',/*20-2F*/ '-',':', ':',':', '~',D04, '<','<', '~','>', D04,'>', '=','b','d','#',/*30-3F*/ '.',':', ':',':', ':','!', '/',D04, ':',':', '/',D04, ':',D04,D04,'P',/*40-4F*/ ',','i', '/',D04, '|','|', '|','T', '/',D04, '/','7', 'r','}','/','P',/*50-5F*/ ',',':', ';',D04, '>',D04, 'S','S', '/',')', '|','7', '>',D05,D05,D06,/*60-6F*/ 'v',D04, D04,D05, '+','}', D05,'F', '/',D05, '/',D06, 'p','D',D06,D07,/*70-7F*/ '.',':', ':',':', ':',BSQ, ':',D04, ':',BSQ, '!',D04, ':',D04,D04,D05,/*80-8F*/ BSQ,BSQ, ':',D04, BSQ,'|', '(',D05, '<','%', D04,'Z', '<',D05,D05,D06,/*90-9F*/ ',',BSQ, 'i',D04, BSQ,BSQ, D04,BSQ, '|','|', '|','T', D04,BSQ,'4','9',/*A0-AF*/ 'v',D04, D04,D05, BSQ,BSQ, D05,D06, '+',D05, '{',D06, 'q',D06,D06,D07,/*B0-BF*/ '_',':', ':',D04, ':',D04, D04,D05, ':',D04, D04,D05, ':',D05,D05,D06,/*C0-CF*/ BSQ,D04, D04,D05, D04,'L', D05,'[', '<','Z', '/','Z', 'c','k',D06,'R',/*D0-DF*/ ',',D04, D04,D05, '>',BSQ, 'S','S', D04,D05, 'J',']', '>',D06,'1','9',/*E0-EF*/ 'o','b', 'd',D06, 'b','b', D06,'6', 'd',D06, 'd',D07, '#',D07,D07,D08 /*F0-FF*/ }; static void makeRowOfSignatures(FILE * const ifP, unsigned int const cols, unsigned int const rows, int const format, unsigned int const cellWidth, unsigned int const cellHeight, unsigned int const row, unsigned int * const sig, unsigned int const ccols) { /*---------------------------------------------------------------------------- Compute the signatures for every cell in a row. Read the pixels from *ifP, which is positioned to the first pixel row of the cell row, which is row number 'row'. The image dimensions are 'cols' x 'rows' pixels. Each cell is 'cellWidth' x 'cellHeight'. Return the signatures as sig[], which is 'ccols' wide because that's how many cells you get from 'cols' pixels divided into cells 'cellWidth' pixels wide. -----------------------------------------------------------------------------*/ unsigned int b; unsigned int subrow; /* row within cell */ bit * bitrow; /* malloc'ed array */ bitrow = pbm_allocrow(cols); { unsigned int col; for (col = 0; col < ccols; ++col) sig[col] = 0; } b = 0x1; /* initial value */ for (subrow = 0; subrow < cellHeight; ++subrow) { if (row + subrow < rows) { unsigned int subcol; /* col within cell */ pbm_readpbmrow(ifP, bitrow, cols, format); for (subcol = 0; subcol < cellWidth; ++subcol) { unsigned int col, ccol; for (col = subcol, ccol = 0; col < cols; col += cellWidth, ++ccol) { if (bitrow[col] == PBM_BLACK) sig[ccol] |= b; } b <<= 1; } } } pbm_freerow(bitrow); } static void findRightMargin(const unsigned int * const sig, unsigned int const ccols, const char * const carr, unsigned int * const endColP) { /*---------------------------------------------------------------------------- Find the first cell of the right margin, i.e. a contiguous set of all-white cells at the right end of the row. -----------------------------------------------------------------------------*/ unsigned int endcol; for (endcol = ccols; endcol > 0; --endcol) { if (carr[sig[endcol-1]] != ' ') break; } *endColP = endcol; } static void assembleCellRow(const unsigned int * const sig, unsigned int const ccols, const char * const carr, char * const line) { /*---------------------------------------------------------------------------- Return as line[] the line of ASCII codes for the characters of one row of cells, ready for printing. -----------------------------------------------------------------------------*/ unsigned int col; for (col = 0; col < ccols; ++col) line[col] = carr[sig[col]]; line[ccols] = '\0'; } static void pbmtoascii(FILE * const ifP, unsigned int const cellWidth, unsigned int const cellHeight, const char * const carr) { int format; int cols, rows; /* Dimensions of the input in pixels */ unsigned int ccols; /* Width of the output in characters */ char * line; /* malloc'ed array */ unsigned int row; unsigned int * signatureRow; /* malloc'ed array */ /* This is the cell signatures of a row of cells. signatureRow[0] is the signature for the first (leftmost) cell in the row, signatureRow[1] is the signature for the next one, etc. A signature is an encoding of the pixels of a cell as an integer, as described above. */ assert(cellWidth * cellHeight <= sizeof(signatureRow[0])*8); pbm_readpbminit(ifP, &cols, &rows, &format); ccols = (cols + cellWidth - 1) / cellWidth; MALLOCARRAY(signatureRow, ccols); if (signatureRow == NULL) pm_error("No memory for %u columns", ccols); MALLOCARRAY_NOFAIL(line, ccols+1); if (line == NULL) pm_error("No memory for %u columns", ccols); for (row = 0; row < rows; row += cellHeight) { unsigned int endCol; makeRowOfSignatures(ifP, cols, rows, format, cellWidth, cellHeight, row, signatureRow, ccols); findRightMargin(signatureRow, ccols, carr, &endCol); assembleCellRow(signatureRow, endCol, carr, line); puts(line); } free(signatureRow); free(line); } int main(int argc, const char ** argv) { FILE * ifP; int argn, gridx, gridy; const char * carr; const char* usage = "[-1x2|-2x4] [pbmfile]"; pm_proginit(&argc, argv); /* Set up default parameters. */ argn = 1; gridx = 1; gridy = 2; carr = carr1x2; /* Check for flags. */ while ( argn < argc && argv[argn][0] == '-' && argv[argn][1] != '\0' ) { if ( pm_keymatch( argv[argn], "-1x2", 2 ) ) { gridx = 1; gridy = 2; carr = carr1x2; } else if ( pm_keymatch( argv[argn], "-2x4", 2 ) ) { gridx = 2; gridy = 4; carr = carr2x4; } else pm_usage( usage ); ++argn; } if ( argn < argc ) { ifP = pm_openr( argv[argn] ); ++argn; } else ifP = stdin; if ( argn != argc ) pm_usage( usage ); pbmtoascii(ifP, gridx, gridy, carr); pm_close(ifP); return 0; }