/* ** tifftopnm.c - converts a Tagged Image File to a portable anymap ** ** Derived by Jef Poskanzer from tif2ras.c, which is: ** ** Copyright (c) 1990 by Sun Microsystems, Inc. ** ** Author: Patrick J. Naughton ** naughton@wind.sun.com ** ** Permission to use, copy, modify, and distribute this software and its ** documentation for any purpose and without fee is hereby granted, ** provided that the above copyright notice appear in all copies and that ** both that copyright notice and this permission notice appear in ** supporting documentation. ** ** This file is provided AS IS with no warranties of any kind. The author ** shall have no liability with respect to the infringement of copyrights, ** trade secrets or any patents by this file or any part thereof. In no ** event will the author be liable for any lost revenue or profits or ** other special, indirect and consequential damages. */ /* Design note: We have two different ways of converting from Tiff, as provided by the Tiff library: 1) decode the entire image into memory at once, using TIFFRGBAImageGet(), then convert to PNM and output row by row. 2) read, convert, and output one row at a time using TIFFReadScanline(). (1) is preferable because the Tiff library does more of the work, which means it understands more of the Tiff format possibilities now and in the future. Also, some compressed TIFF formats don't allow you to extract an individual row. (2) uses far less memory, and because our code does more of the work, it's possible that it can be more flexible or at least give better diagnostic information if there's something wrong with the TIFF. In Netpbm, we stress function over performance, so by default we try (1) first, and if we can't get enough memory for the decoded image or TIFFRGBAImageGet() fails, we fall back to (2). But we give the user the -byrow option to order (2) only. */ #define _BSD_SOURCE 1 /* Make sure strdup() is in string.h */ #define _XOPEN_SOURCE 500 /* Make sure strdup() is in string.h */ #include #include "pnm.h" #include "shhopt.h" #include "mallocvar.h" #include "nstring.h" #ifdef VMS #ifdef SYSV #undef SYSV #endif #include #endif /* See warning about tiffio.h in pamtotiff.c */ #include /* The following are in current tiff.h, but so that we can compile against older tiff libraries, we define them here. */ #ifndef PHOTOMETRIC_LOGL #define PHOTOMETRIC_LOGL 32844 #endif #ifndef PHOTOMETRIC_LOGLUV #define PHOTOMETRIC_LOGLUV 32845 #endif #define MAXCOLORS 1024 #ifndef PHOTOMETRIC_DEPTH #define PHOTOMETRIC_DEPTH 32768 #endif struct cmdlineInfo { /* All the information the user supplied in the command line, in a form easy for the program to use. */ char * inputFilename; unsigned int headerdump; char * alphaFilename; bool alphaStdout; unsigned int respectfillorder; /* -respectfillorder option */ unsigned int byrow; unsigned int verbose; }; static void parseCommandLine(int argc, const char ** const argv, struct cmdlineInfo * const cmdlineP) { /*---------------------------------------------------------------------------- Note that many of the strings that this function returns in the *cmdlineP structure are actually in the supplied argv array. And sometimes, one of these strings is actually just a suffix of an entry in argv! -----------------------------------------------------------------------------*/ optStruct3 opt; optEntry *option_def; unsigned int option_def_index; unsigned int alphaSpec; MALLOCARRAY_NOFAIL(option_def, 100); opt.opt_table = option_def; opt.short_allowed = FALSE; opt.allowNegNum = FALSE; option_def_index = 0; /* incremented by OPTENT3 */ OPTENT3(0, "verbose", OPT_FLAG, NULL, &cmdlineP->verbose, 0); OPTENT3(0, "respectfillorder", OPT_FLAG, NULL, &cmdlineP->respectfillorder, 0); OPTENT3(0, "byrow", OPT_FLAG, NULL, &cmdlineP->byrow, 0); OPTENT3('h', "headerdump", OPT_FLAG, NULL, &cmdlineP->headerdump, 0); OPTENT3(0, "alphaout", OPT_STRING, &cmdlineP->alphaFilename, &alphaSpec, 0); optParseOptions3(&argc, (char **)argv, opt, sizeof(opt), 0); if (argc - 1 == 0) cmdlineP->inputFilename = strdup("-"); /* he wants stdin */ else if (argc - 1 == 1) cmdlineP->inputFilename = strdup(argv[1]); else pm_error("Too many arguments. The only argument accepted " "is the input file name"); if (alphaSpec) { if (streq(cmdlineP->alphaFilename, "-")) cmdlineP->alphaStdout = TRUE; else cmdlineP->alphaStdout = FALSE; } else { cmdlineP->alphaFilename = NULL; cmdlineP->alphaStdout = FALSE; } } static void getBps(TIFF * const tif, unsigned short * const bpsP) { unsigned short tiffBps; unsigned short bps; int rc; rc = TIFFGetField(tif, TIFFTAG_BITSPERSAMPLE, &tiffBps); bps = (rc == 0) ? 1 : tiffBps; if (bps < 1 || (bps > 8 && bps != 16 && bps != 32)) pm_error("This program can process Tiff images with only " "1-8 or 16 bits per sample. The input Tiff image " "has %hu bits per sample.", bps); else *bpsP = bps; } struct tiffDirInfo { unsigned short bps; unsigned short spp; unsigned short photomet; unsigned short planarconfig; unsigned short fillorder; unsigned int cols; unsigned int rows; }; static void readDirectory(TIFF * const tif, bool const headerdump, struct tiffDirInfo * const headerP) { /*---------------------------------------------------------------------------- Read various values of TIFF tags from the TIFF directory, and default them if not in there and make guesses where values are invalid. Exit program with error message if required tags aren't there or values are inconsistent or beyond our capabilities. if 'headerdump' is true, issue informational messages about what we find. The TIFF library is capable of returning invalid values (if the input file contains invalid values). We generally return those invalid values to our caller. -----------------------------------------------------------------------------*/ int rc; unsigned short tiffSpp; if (headerdump) TIFFPrintDirectory(tif, stderr, TIFFPRINT_NONE); getBps(tif, &headerP->bps); rc = TIFFGetFieldDefaulted(tif, TIFFTAG_FILLORDER, &headerP->fillorder); rc = TIFFGetField(tif, TIFFTAG_SAMPLESPERPIXEL, &tiffSpp); headerP->spp = (rc == 0) ? 1 : tiffSpp; rc = TIFFGetField(tif, TIFFTAG_PHOTOMETRIC, &headerP->photomet); if (rc == 0) pm_error("PHOTOMETRIC tag is not in Tiff file. " "TIFFGetField() of it failed.\n" "This means the input is not valid Tiff."); if (headerP->spp > 1) { rc = TIFFGetField(tif, TIFFTAG_PLANARCONFIG, &headerP->planarconfig); if (rc == 0) pm_error("PLANARCONFIG tag is not in Tiff file, though it " "has more than one sample per pixel. " "TIFFGetField() of it failed. This means the input " "is not valid Tiff."); } else headerP->planarconfig = PLANARCONFIG_CONTIG; switch (headerP->planarconfig) { case PLANARCONFIG_CONTIG: break; case PLANARCONFIG_SEPARATE: if (headerP->photomet != PHOTOMETRIC_RGB && headerP->photomet != PHOTOMETRIC_SEPARATED) pm_error("This program can handle separate planes only " "with RGB (PHOTOMETRIC tag = %u) or SEPARATED " "(PHOTOMETRIC tag = %u) data. The input Tiff file " "has PHOTOMETRIC tag = %hu.", PHOTOMETRIC_RGB, PHOTOMETRIC_SEPARATED, headerP->photomet); break; default: pm_error("Unrecognized PLANARCONFIG tag value in Tiff input: %u.\n", headerP->planarconfig); } rc = TIFFGetField(tif, TIFFTAG_IMAGEWIDTH, &headerP->cols); if (rc == 0) pm_error("Input Tiff file is invalid. It has no IMAGEWIDTH tag."); rc = TIFFGetField( tif, TIFFTAG_IMAGELENGTH, &headerP->rows); if (rc == 0) pm_error("Input Tiff file is invalid. It has no IMAGELENGTH tag."); if (headerdump) { pm_message("%ux%ux%u image", headerP->cols, headerP->rows, headerP->bps * headerP->spp); pm_message("%hu bits/sample, %hu samples/pixel", headerP->bps, headerP->spp); } } static void readscanline(TIFF * const tif, unsigned char scanbuf[], int const row, int const plane, unsigned int const cols, unsigned short const bps, unsigned short const spp, unsigned short const fillorder, unsigned int * const samplebuf) { /*---------------------------------------------------------------------------- Read one scanline out of the Tiff input and store it into samplebuf[]. Unlike the scanline returned by the Tiff library function, samplebuf[] is composed of one sample per array element, which makes it easier for our caller to process. scanbuf[] is a scratch array for our use, which is big enough to hold a Tiff scanline. -----------------------------------------------------------------------------*/ int rc; const unsigned int bpsmask = (1 << bps) - 1; /* A mask for taking the lowest 'bps' bits of a number */ /* The TIFFReadScanline man page doesn't tell the format of its 'buf' return value, but it is exactly the same format as the 'buf' input to TIFFWriteScanline. The man page for that doesn't say anything either, but the source code for Pamtotiff contains a specification. */ rc = TIFFReadScanline(tif, scanbuf, row, plane); if (rc < 0) pm_error( "Unable to read row %d, plane %d of input Tiff image. " "TIFFReadScanline() failed.", row, plane); else if (bps == 8) { int sample; for (sample = 0; sample < cols*spp; sample++) samplebuf[sample] = scanbuf[sample]; } else if (bps < 8) { /* Note that in this format, samples do not span bytes. Rather, each byte may have don't-care bits in the right-end positions. At least that's how I infer the format from reading pnmtotiff.c -Bryan 00.11.18 */ int sample; int bitsleft; unsigned char * inP; for (sample = 0, bitsleft=8, inP=scanbuf; sample < cols*spp; ++sample) { if (bitsleft == 0) { ++inP; bitsleft = 8; } switch (fillorder) { case FILLORDER_MSB2LSB: samplebuf[sample] = (*inP >> (bitsleft-bps)) & bpsmask; break; case FILLORDER_LSB2MSB: samplebuf[sample] = (*inP >> (8-bitsleft)) & bpsmask; break; default: pm_error("Internal error: invalid value for fillorder: %u", fillorder); } bitsleft -= bps; if (bitsleft < bps) /* Don't count dregs at end of byte */ bitsleft = 0; } } else if (bps == 16) { /* Before Netpbm 9.17, this program assumed that scanbuf[] contained an array of bytes as read from the Tiff file. In fact, in this bps == 16 case, it's an array of "shorts", each stored in whatever format this platform uses (which is none of our concern). The pre-9.17 code also presumed that the TIFF "FILLORDER" tag determined the order in which the bytes of each sample appear in a TIFF file, which is contrary to the TIFF spec. */ const uint16 * const scanbuf16 = (const uint16 *) scanbuf; unsigned int sample; for (sample = 0; sample < cols*spp; ++sample) samplebuf[sample] = scanbuf16[sample]; } else if (bps == 32) { uint32 * const scanbuf32 = (uint32 *) scanbuf; unsigned int sample; for (sample = 0; sample < cols*spp; ++sample) samplebuf[sample] = scanbuf32[sample]; } else pm_error("Internal error: invalid bits per sample passed to " "readscanline()"); } static void pick_cmyk_pixel(const unsigned int samplebuf[], const int sample_cursor, xelval * const r_p, xelval * const b_p, xelval * const g_p) { /* Note that the TIFF spec does not say which of the 4 samples is which, but common sense says they're in order C,M,Y,K. Before Netpbm 10.21 (March 2004), we assumed C,Y,M,K for some reason. But combined with a compensating error in the CMYK->RGB calculation, it had the same effect as C,M,Y,K. */ unsigned int const c = samplebuf[sample_cursor+0]; unsigned int const m = samplebuf[sample_cursor+1]; unsigned int const y = samplebuf[sample_cursor+2]; unsigned int const k = samplebuf[sample_cursor+3]; /* The CMYK->RGB formula used by TIFFRGBAImageGet() in the TIFF library is the following, (with some apparent confusion with the names of the yellow and magenta pigments being reversed). R = (1-K)*(1-C) (with C,Y,M,K normalized to 0..1) G = (1-K)*(1-M) B = (1-K)*(1-Y) We used that too before Netpbm 10.21 (March 2004). Now we use the inverse of what Pnmtotiffcmyk has always used, which makes sense as follows: A microliter of black ink is simply a substitute for a microliter each of cyan, magenta, and yellow ink. Yellow ink removes blue light from what the white paper reflects. */ *r_p = 255 - MIN(255, c + k); *g_p = 255 - MIN(255, m + k); *b_p = 255 - MIN(255, y + k); } static void computeFillorder(unsigned short const fillorderTag, unsigned short * const fillorderP, bool const respectfillorder) { if (respectfillorder) { if (fillorderTag != FILLORDER_MSB2LSB && fillorderTag != FILLORDER_LSB2MSB) pm_error("Invalid value in Tiff input for the FILLORDER tag: %u. " "Valid values are %u and %u. Try omitting the " "-respectfillorder option.", fillorderTag, FILLORDER_MSB2LSB, FILLORDER_LSB2MSB); else *fillorderP = fillorderTag; } else { *fillorderP = FILLORDER_MSB2LSB; if (fillorderTag != *fillorderP) pm_message("Warning: overriding FILLORDER tag in the tiff input " "and assuming msb-to-lsb. Consider the " "-respectfillorder option."); } } static void analyzeImageType(TIFF * const tif, unsigned short const bps, unsigned short const spp, unsigned short const photomet, xelval * const maxvalP, int * const formatP, xel colormap[], bool const headerdump, struct cmdlineInfo const cmdline) { bool grayscale; if (bps == 1 && spp == 1) { if (cmdline.headerdump) pm_message("bilevel"); grayscale = TRUE; *maxvalP = 1; } else { /* How come we don't deal with the photometric for the monochrome case (make sure it's one we know)? -Bryan 00.03.04 */ switch (photomet) { case PHOTOMETRIC_MINISBLACK: case PHOTOMETRIC_MINISWHITE: if (spp != 1) pm_error("This grayscale image has %d samples per pixel. " "We understand only 1.", spp); grayscale = TRUE; *maxvalP = pm_bitstomaxval(MIN(bps,16)); if (headerdump) pm_message("grayscale image, (min=%s) output maxval %u ", photomet == PHOTOMETRIC_MINISBLACK ? "black" : "white", *maxvalP ); break; case PHOTOMETRIC_PALETTE: { int i; int numcolors; unsigned short* redcolormap; unsigned short* greencolormap; unsigned short* bluecolormap; if (headerdump) pm_message("colormapped"); if (spp != 1) pm_error("This paletted image has %d samples per pixel. " "We understand only 1.", spp); if (!TIFFGetField(tif, TIFFTAG_COLORMAP, &redcolormap, &greencolormap, &bluecolormap)) pm_error("error getting colormaps"); numcolors = 1 << bps; if (numcolors > MAXCOLORS) pm_error("too many colors"); *maxvalP = PNM_MAXMAXVAL; grayscale = FALSE; for (i = 0; i < numcolors; ++i) { xelval r, g, b; r = (long) redcolormap[i] * PNM_MAXMAXVAL / 65535L; g = (long) greencolormap[i] * PNM_MAXMAXVAL / 65535L; b = (long) bluecolormap[i] * PNM_MAXMAXVAL / 65535L; PPM_ASSIGN(colormap[i], r, g, b); } } break; case PHOTOMETRIC_SEPARATED: { unsigned short inkset; if (headerdump) pm_message("color separation"); if (TIFFGetField(tif, TIFFTAG_INKNAMES, &inkset) == 1 && inkset != INKSET_CMYK) if (inkset != INKSET_CMYK) pm_error("This color separation file uses an inkset (%d) " "we can't handle. We handle only CMYK.", inkset); if (spp != 4) pm_error("This CMYK color separation file is %d samples per " "pixel. " "We need 4 samples, though: C, M, Y, and K. ", spp); grayscale = FALSE; *maxvalP = (1 << bps) - 1; } break; case PHOTOMETRIC_RGB: if (headerdump) pm_message("RGB truecolor"); grayscale = FALSE; if (spp != 3 && spp != 4) pm_error("This RGB image has %d samples per pixel. " "We understand only 3 or 4.", spp); *maxvalP = (1 << bps) - 1; break; case PHOTOMETRIC_MASK: pm_error("don't know how to handle PHOTOMETRIC_MASK"); case PHOTOMETRIC_DEPTH: pm_error("don't know how to handle PHOTOMETRIC_DEPTH"); case PHOTOMETRIC_YCBCR: pm_error("don't know how to handle PHOTOMETRIC_YCBCR"); case PHOTOMETRIC_CIELAB: pm_error("don't know how to handle PHOTOMETRIC_CIELAB"); case PHOTOMETRIC_LOGL: pm_error("don't know how to handle PHOTOMETRIC_LOGL"); case PHOTOMETRIC_LOGLUV: pm_error("don't know how to handle PHOTOMETRIC_LOGLUV"); default: pm_error("unknown photometric: %d", photomet); } } if (*maxvalP > PNM_OVERALLMAXVAL) pm_error("bits/sample (%d) in the input image is too large.", bps); if (grayscale) { if (*maxvalP == 1) { *formatP = PBM_TYPE; pm_message("writing PBM file"); } else { *formatP = PGM_TYPE; pm_message("writing PGM file"); } } else { *formatP = PPM_TYPE; pm_message("writing PPM file"); } } static void convertRow(unsigned int const samplebuf[], xel xelrow[], gray alpharow[], int const cols, xelval const maxval, unsigned short const photomet, unsigned short const spp, xel const colormap[]) { /*---------------------------------------------------------------------------- Assuming samplebuf[] is an array of raster values as returned by the Tiff library, convert it to a libnetpbm row in xelrow[] and alpharow[]. -----------------------------------------------------------------------------*/ switch (photomet) { case PHOTOMETRIC_MINISBLACK: { int col; for (col = 0; col < cols; ++col) { PNM_ASSIGN1(xelrow[col], samplebuf[col]); alpharow[col] = 0; } } break; case PHOTOMETRIC_MINISWHITE: { int col; for (col = 0; col < cols; ++col) { PNM_ASSIGN1(xelrow[col], maxval - samplebuf[col]); alpharow[col] = 0; } } break; case PHOTOMETRIC_PALETTE: { int col; for ( col = 0; col < cols; ++col ) { /* We know the following array index is in bounds because we filled samplebuf with samples of 'bps' bits each and we verified that the largest number that fits in 'bps' bits is less than MAXCOLORS, the dimension of the array. */ xelrow[col] = colormap[samplebuf[col]]; alpharow[col] = 0; } } break; case PHOTOMETRIC_SEPARATED: { int col, sample; for (col = 0, sample = 0; col < cols; ++col, sample+=spp) { xelval r, g, b; pick_cmyk_pixel(samplebuf, sample, &r, &b, &g); PPM_ASSIGN(xelrow[col], r, g, b); alpharow[col] = 0; } } break; case PHOTOMETRIC_RGB: { int col, sample; for (col = 0, sample = 0; col < cols; ++col, sample+=spp) { PPM_ASSIGN(xelrow[col], samplebuf[sample+0], samplebuf[sample+1], samplebuf[sample+2]); if (spp >= 4) alpharow[col] = samplebuf[sample+3]; else alpharow[col] = 0; } break; } default: pm_error("internal error: unknown photometric in the picking " "routine: %d", photomet); } } static void scale32to16(unsigned int samplebuf[], unsigned int const cols, unsigned int const spp) { /*---------------------------------------------------------------------------- Convert every sample in samplebuf[] to something that can be expressed in 16 bits, assuming it takes 32 bits now. -----------------------------------------------------------------------------*/ unsigned int i; for (i = 0; i < cols * spp; ++i) samplebuf[i] >>= 16; } static void convertMultiPlaneRow(TIFF * const tif, xel xelrow[], gray alpharow[], int const cols, xelval const maxval, int const row, unsigned short const photomet, unsigned short const bps, unsigned short const spp, unsigned short const fillorder, unsigned char * const scanbuf, unsigned int * const samplebuf) { /* The input is in separate planes, so we need to read one scanline for the reds, another for the greens, then another for the blues. */ int col; if (photomet != PHOTOMETRIC_RGB) pm_error("This is a multiple-plane file, but is not an RGB " "file. This program does not know how to handle that."); else { /* First, clear the buffer so we can add red, green, and blue one at a time. */ for (col = 0; col < cols; ++col) PPM_ASSIGN(xelrow[col], 0, 0, 0); /* Read the reds */ readscanline(tif, scanbuf, row, 0, cols, bps, spp, fillorder, samplebuf); if (bps == 32) scale32to16(samplebuf, cols, spp); for (col = 0; col < cols; ++col) PPM_PUTR(xelrow[col], samplebuf[col]); /* Next the greens */ readscanline(tif, scanbuf, row, 1, cols, bps, spp, fillorder, samplebuf); if (bps == 32) scale32to16(samplebuf, cols, spp); for (col = 0; col < cols; ++col) PPM_PUTG( xelrow[col], samplebuf[col] ); /* And finally the blues */ readscanline(tif, scanbuf, row, 2, cols, bps, spp, fillorder, samplebuf); if (bps == 32) scale32to16(samplebuf, cols, spp); for (col = 0; col < cols; ++col) PPM_PUTB(xelrow[col], samplebuf[col]); /* Could there be an alpha plane? (We assume no. But if so, here is where to read it) */ for (col = 0; col < cols; ++col) alpharow[col] = 0; } } static void convertRasterByRows(FILE * const imageoutFile, FILE * const alphaFile, unsigned int const cols, unsigned int const rows, xelval const maxval, int const format, TIFF * const tif, unsigned short const photomet, unsigned short const planarconfig, unsigned short const bps, unsigned short const spp, unsigned short const fillorder, xel colormap[]) { /*---------------------------------------------------------------------------- With the TIFF header all processed (and relevant information from it in our arguments), write out the TIFF raster to the file images *imageoutFile and *alphaFile. Do this one row at a time, employing the TIFF library's TIFFReadScanline. -----------------------------------------------------------------------------*/ unsigned char * scanbuf; /* Buffer for a raster line in the format returned by TIFF library's TIFFReadScanline */ unsigned int * samplebuf; /* Same info as 'scanbuf' above, but with each raster column (sample) represented as single array element, so it's easy to work with. */ xel* xelrow; /* The ppm-format row of the image row we are presently converting */ gray* alpharow; /* The pgm-format row representing the alpha values for the image row we are presently converting. */ int row; scanbuf = (unsigned char *) malloc(TIFFScanlineSize(tif)); if (scanbuf == NULL) pm_error("can't allocate memory for scanline buffer"); MALLOCARRAY(samplebuf, cols * spp); if (samplebuf == NULL) pm_error ("can't allocate memory for row buffer"); xelrow = pnm_allocrow(cols); alpharow = pgm_allocrow(cols); for ( row = 0; row < rows; ++row ) { /* Read one row of samples into samplebuf[] */ if (planarconfig == PLANARCONFIG_CONTIG) { readscanline(tif, scanbuf, row, 0, cols, bps, spp, fillorder, samplebuf); if (bps == 32) scale32to16(samplebuf, cols, spp); convertRow(samplebuf, xelrow, alpharow, cols, maxval, photomet, spp, colormap); } else convertMultiPlaneRow(tif, xelrow, alpharow, cols, maxval, row, photomet, bps, spp, fillorder, scanbuf, samplebuf); if (imageoutFile != NULL) pnm_writepnmrow( imageoutFile, xelrow, cols, (xelval) maxval, format, 0 ); if (alphaFile != NULL) pgm_writepgmrow( alphaFile, alpharow, cols, (gray) maxval, 0); } pgm_freerow(alpharow); pnm_freerow(xelrow); free(samplebuf); free(scanbuf); } static void convertTiffRaster(uint32 * const raster, unsigned int const cols, unsigned int const rows, xelval const maxval, int const format, FILE * const imageoutFile, FILE * const alphaFile) { /*---------------------------------------------------------------------------- Convert the raster 'raster' from the format generated by the TIFF library to PPM (plus PGM alpha mask where applicable) and output it to the files *imageoutFile and *alphaFile in format 'format' with maxval 'maxval'. The raster is 'cols' wide by 'rows' high. -----------------------------------------------------------------------------*/ xel* xelrow; /* The ppm-format row of the image row we are presently converting */ gray* alpharow; /* The pgm-format row representing the alpha values for the image row we are presently converting. */ int row; xelrow = pnm_allocrow(cols); alpharow = pgm_allocrow(cols); for (row = 0; row < rows; ++row) { uint32* rp; /* Address of pixel in 'raster' we are presently converting */ int col; /* Start at beginning of row: */ rp = raster + (rows - row - 1) * cols; for (col = 0; col < cols; ++col) { uint32 const tiffPixel = *rp++; PPM_ASSIGN(xelrow[col], TIFFGetR(tiffPixel) * maxval / 255, TIFFGetG(tiffPixel) * maxval / 255, TIFFGetB(tiffPixel) * maxval / 255); alpharow[col] = TIFFGetA(tiffPixel) * maxval / 255 ; } if (imageoutFile != NULL) pnm_writepnmrow(imageoutFile, xelrow, cols, maxval, format, 0); if (alphaFile != NULL) pgm_writepgmrow(alphaFile, alpharow, cols, maxval, 0); } pgm_freerow(alpharow); pnm_freerow(xelrow); } enum convertDisp {CONV_DONE, CONV_OOM, CONV_UNABLE, CONV_FAILED, CONV_NOTATTEMPTED}; static void convertRasterInMemory(FILE * const imageoutFile, FILE * const alphaFile, unsigned int const cols, unsigned int const rows, xelval const maxval, int const format, TIFF * const tif, unsigned short const photomet, unsigned short const planarconfig, unsigned short const bps, unsigned short const spp, unsigned short const fillorder, xel colormap[], enum convertDisp * const statusP) { /*---------------------------------------------------------------------------- With the TIFF header all processed (and relevant information from it in our arguments), write out the TIFF raster to the file images *imageoutFile and *alphaFile. Do this by reading the entire TIFF image into memory at once and formatting it with the TIFF library's TIFFRGBAImageGet(). Return *statusP == CONV_OOM iff we are unable to proceed because we cannot get memory to store the entire raster. This means Caller may still be able to do the conversion using a row-by-row strategy. Like typical Netpbm programs, we simply abort the program if we are unable to allocate memory for other things. -----------------------------------------------------------------------------*/ if (rows == 0 || cols == 0) *statusP = CONV_DONE; else { char emsg[1024] ; int ok; ok = TIFFRGBAImageOK(tif, emsg); if (!ok) { pm_message(emsg); *statusP = CONV_UNABLE; } else { uint32* raster ; /* Note that TIFFRGBAImageGet() converts any bits per sample to 8. Maxval of the raster it returns is always 255. */ MALLOCARRAY(raster, cols * rows); if (raster == NULL) { pm_message("Unable to allocate space for a raster of %u " "pixels.", cols * rows); *statusP = CONV_OOM; } else { int const stopOnErrorFalse = FALSE; TIFFRGBAImage img ; int ok; ok = TIFFRGBAImageBegin(&img, tif, stopOnErrorFalse, emsg) ; if (!ok) { pm_message(emsg); *statusP = CONV_FAILED; } else { int ok; ok = TIFFRGBAImageGet(&img, raster, cols, rows); TIFFRGBAImageEnd(&img) ; if (!ok) { pm_message(emsg); *statusP = CONV_FAILED; } else { *statusP = CONV_DONE; convertTiffRaster(raster, cols, rows, maxval, format, imageoutFile, alphaFile); } } free(raster); } } } } static void convertImage(TIFF * const tifP, FILE * const alphaFile, FILE * const imageoutFile, struct cmdlineInfo const cmdline) { struct tiffDirInfo tiffDir; unsigned int cols, rows; int format; xelval maxval; xel colormap[MAXCOLORS]; unsigned short fillorder; readDirectory(tifP, cmdline.headerdump, &tiffDir); cols = tiffDir.cols; rows = tiffDir.rows; computeFillorder(tiffDir.fillorder, &fillorder, cmdline.respectfillorder); analyzeImageType(tifP, tiffDir.bps, tiffDir.spp, tiffDir.photomet, &maxval, &format, colormap, cmdline.headerdump, cmdline); if (imageoutFile != NULL) pnm_writepnminit(imageoutFile, cols, rows, maxval, format, 0); if (alphaFile != NULL) pgm_writepgminit(alphaFile, cols, rows, maxval, 0); { enum convertDisp status; if (cmdline.byrow) status = CONV_NOTATTEMPTED; else { convertRasterInMemory( imageoutFile, alphaFile, cols, rows, maxval, format, tifP, tiffDir.photomet, tiffDir.planarconfig, tiffDir.bps, tiffDir.spp, fillorder, colormap, &status); } if (status == CONV_DONE) { if (tiffDir.bps > 8) pm_message("actual resolution has been reduced to 24 bits " "per pixel in the conversion. You can get the " "full %u bits that are in the TIFF with the " "-byrow option.", tiffDir.bps); } else { if (status != CONV_NOTATTEMPTED) pm_message("In-memory conversion failed; " "using more primitive row-by-row conversion."); convertRasterByRows( imageoutFile, alphaFile, cols, rows, maxval, format, tifP, tiffDir.photomet, tiffDir.planarconfig, tiffDir.bps, tiffDir.spp, fillorder, colormap); } } } static void convertIt(TIFF * const tifP, FILE * const alphaFile, FILE * const imageoutFile, struct cmdlineInfo const cmdline) { unsigned int imageSeq; bool eof; imageSeq = 0; eof = FALSE; while (!eof) { bool success; if (cmdline.verbose) pm_message("Converting Image %u", imageSeq); convertImage(tifP, alphaFile, imageoutFile, cmdline); success = TIFFReadDirectory(tifP); eof = !success; ++imageSeq; } } int main(int argc, const char * argv[]) { struct cmdlineInfo cmdline; TIFF * tif; FILE * alphaFile; FILE * imageoutFile; pm_proginit(&argc, argv); parseCommandLine(argc, argv, &cmdline); if (!streq(cmdline.inputFilename, "-")) { tif = TIFFOpen(cmdline.inputFilename, "r"); if (tif == NULL) pm_error("error opening TIFF file %s", cmdline.inputFilename); } else { tif = TIFFFdOpen(0, "Standard Input", "r"); if (tif == NULL) pm_error("error opening standard input as TIFF file"); } if (cmdline.alphaStdout) alphaFile = stdout; else if (cmdline.alphaFilename == NULL) alphaFile = NULL; else alphaFile = pm_openw(cmdline.alphaFilename); if (cmdline.alphaStdout) imageoutFile = NULL; else imageoutFile = stdout; convertIt(tif, alphaFile, imageoutFile, cmdline); if (imageoutFile != NULL) pm_close( imageoutFile ); if (alphaFile != NULL) pm_close( alphaFile ); strfree(cmdline.inputFilename); /* If the program failed, it previously aborted with nonzero completion code, via various function calls. */ return 0; }