about summary refs log tree commit diff
path: root/converter/other/jbig/libjbig/jbig_ar.c
diff options
context:
space:
mode:
Diffstat (limited to 'converter/other/jbig/libjbig/jbig_ar.c')
-rw-r--r--converter/other/jbig/libjbig/jbig_ar.c417
1 files changed, 417 insertions, 0 deletions
diff --git a/converter/other/jbig/libjbig/jbig_ar.c b/converter/other/jbig/libjbig/jbig_ar.c
new file mode 100644
index 00000000..d23a317d
--- /dev/null
+++ b/converter/other/jbig/libjbig/jbig_ar.c
@@ -0,0 +1,417 @@
+/*
+ *  Arithmetic encoder and decoder of the portable JBIG
+ *  compression library
+ *
+ *  Markus Kuhn -- http://www.cl.cam.ac.uk/~mgk25/jbigkit/
+ *
+ *  This module implements a portable standard C arithmetic encoder
+ *  and decoder used by the JBIG lossless bi-level image compression
+ *  algorithm as specified in International Standard ISO 11544:1993
+ *  and ITU-T Recommendation T.82.
+ *
+ *  This program is free software; you can redistribute it and/or modify
+ *  it under the terms of the GNU General Public License as published by
+ *  the Free Software Foundation; either version 2 of the License, or
+ *  (at your option) any later version.
+ *
+ *  This program is distributed in the hope that it will be useful,
+ *  but WITHOUT ANY WARRANTY; without even the implied warranty of
+ *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
+ *  GNU General Public License for more details.
+ *
+ *  You should have received a copy of the GNU General Public License
+ *  along with this program; if not, write to the Free Software
+ *  Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
+ * 
+ *  If you want to use this program under different license conditions,
+ *  then contact the author for an arrangement.
+ */
+
+#include <assert.h>
+#include "jbig_ar.h"
+
+/*
+ *  Probability estimation tables for the arithmetic encoder/decoder
+ *  given by ITU T.82 Table 24.
+ */
+
+static short lsztab[113] = {
+  0x5a1d, 0x2586, 0x1114, 0x080b, 0x03d8, 0x01da, 0x00e5, 0x006f,
+  0x0036, 0x001a, 0x000d, 0x0006, 0x0003, 0x0001, 0x5a7f, 0x3f25,
+  0x2cf2, 0x207c, 0x17b9, 0x1182, 0x0cef, 0x09a1, 0x072f, 0x055c,
+  0x0406, 0x0303, 0x0240, 0x01b1, 0x0144, 0x00f5, 0x00b7, 0x008a,
+  0x0068, 0x004e, 0x003b, 0x002c, 0x5ae1, 0x484c, 0x3a0d, 0x2ef1,
+  0x261f, 0x1f33, 0x19a8, 0x1518, 0x1177, 0x0e74, 0x0bfb, 0x09f8,
+  0x0861, 0x0706, 0x05cd, 0x04de, 0x040f, 0x0363, 0x02d4, 0x025c,
+  0x01f8, 0x01a4, 0x0160, 0x0125, 0x00f6, 0x00cb, 0x00ab, 0x008f,
+  0x5b12, 0x4d04, 0x412c, 0x37d8, 0x2fe8, 0x293c, 0x2379, 0x1edf,
+  0x1aa9, 0x174e, 0x1424, 0x119c, 0x0f6b, 0x0d51, 0x0bb6, 0x0a40,
+  0x5832, 0x4d1c, 0x438e, 0x3bdd, 0x34ee, 0x2eae, 0x299a, 0x2516,
+  0x5570, 0x4ca9, 0x44d9, 0x3e22, 0x3824, 0x32b4, 0x2e17, 0x56a8,
+  0x4f46, 0x47e5, 0x41cf, 0x3c3d, 0x375e, 0x5231, 0x4c0f, 0x4639,
+  0x415e, 0x5627, 0x50e7, 0x4b85, 0x5597, 0x504f, 0x5a10, 0x5522,
+  0x59eb
+};
+
+static unsigned char nmpstab[113] = {
+    1,   2,   3,   4,   5,   6,   7,   8,
+    9,  10,  11,  12,  13,  13,  15,  16,
+   17,  18,  19,  20,  21,  22,  23,  24,
+   25,  26,  27,  28,  29,  30,  31,  32,
+   33,  34,  35,   9,  37,  38,  39,  40,
+   41,  42,  43,  44,  45,  46,  47,  48,
+   49,  50,  51,  52,  53,  54,  55,  56,
+   57,  58,  59,  60,  61,  62,  63,  32,
+   65,  66,  67,  68,  69,  70,  71,  72,
+   73,  74,  75,  76,  77,  78,  79,  48,
+   81,  82,  83,  84,  85,  86,  87,  71,
+   89,  90,  91,  92,  93,  94,  86,  96,
+   97,  98,  99, 100,  93, 102, 103, 104,
+   99, 106, 107, 103, 109, 107, 111, 109,
+  111
+};
+
+/*
+ * least significant 7 bits (mask 0x7f) of nlpstab[] contain NLPS value,
+ * most significant bit (mask 0x80) contains SWTCH bit
+ */
+static unsigned char nlpstab[113] = {
+  129,  14,  16,  18,  20,  23,  25,  28,
+   30,  33,  35,   9,  10,  12, 143,  36,
+   38,  39,  40,  42,  43,  45,  46,  48,
+   49,  51,  52,  54,  56,  57,  59,  60,
+   62,  63,  32,  33, 165,  64,  65,  67,
+   68,  69,  70,  72,  73,  74,  75,  77,
+   78,  79,  48,  50,  50,  51,  52,  53,
+   54,  55,  56,  57,  58,  59,  61,  61,
+  193,  80,  81,  82,  83,  84,  86,  87,
+   87,  72,  72,  74,  74,  75,  77,  77,
+  208,  88,  89,  90,  91,  92,  93,  86,
+  216,  95,  96,  97,  99,  99,  93, 223,
+  101, 102, 103, 104,  99, 105, 106, 107,
+  103, 233, 108, 109, 110, 111, 238, 112,
+  240
+};
+
+/*
+ * The next functions implement the arithmedic encoder and decoder
+ * required for JBIG. The same algorithm is also used in the arithmetic
+ * variant of JPEG.
+ */
+
+/* marker codes */
+#define MARKER_STUFF    0x00
+#define MARKER_ESC      0xff
+
+void arith_encode_init(struct jbg_arenc_state *s, int reuse_st)
+{
+  int i;
+  
+  if (!reuse_st)
+    for (i = 0; i < 4096; s->st[i++] = 0) ;
+  s->c = 0;
+  s->a = 0x10000L;
+  s->sc = 0;
+  s->ct = 11;
+  s->buffer = -1;    /* empty */
+  
+  return;
+}
+
+
+void arith_encode_flush(struct jbg_arenc_state *s)
+{
+  unsigned long temp;
+
+  /* find the s->c in the coding interval with the largest
+   * number of trailing zero bits */
+  if ((temp = (s->a - 1 + s->c) & 0xffff0000L) < s->c)
+    s->c = temp + 0x8000;
+  else
+    s->c = temp;
+  /* send remaining bytes to output */
+  s->c <<= s->ct;
+  if (s->c & 0xf8000000L) {
+    /* one final overflow has to be handled */
+    if (s->buffer >= 0) {
+      s->byte_out(s->buffer + 1, s->file);
+      if (s->buffer + 1 == MARKER_ESC)
+	s->byte_out(MARKER_STUFF, s->file);
+    }
+    /* output 0x00 bytes only when more non-0x00 will follow */
+    if (s->c & 0x7fff800L)
+      for (; s->sc; --s->sc)
+	s->byte_out(0x00, s->file);
+  } else {
+    if (s->buffer >= 0)
+      s->byte_out(s->buffer, s->file); 
+    /* T.82 figure 30 says buffer+1 for the above line! Typo? */
+    for (; s->sc; --s->sc) {
+      s->byte_out(0xff, s->file);
+      s->byte_out(MARKER_STUFF, s->file);
+    }
+  }
+  /* output final bytes only if they are not 0x00 */
+  if (s->c & 0x7fff800L) {
+    s->byte_out((s->c >> 19) & 0xff, s->file);
+    if (((s->c >> 19) & 0xff) == MARKER_ESC)
+      s->byte_out(MARKER_STUFF, s->file);
+    if (s->c & 0x7f800L) {
+      s->byte_out((s->c >> 11) & 0xff, s->file);
+      if (((s->c >> 11) & 0xff) == MARKER_ESC)
+	s->byte_out(MARKER_STUFF, s->file);
+    }
+  }
+
+  return;
+}
+
+
+void arith_encode(struct jbg_arenc_state *s, int cx, int pix) 
+{
+  register unsigned lsz, ss;
+  register unsigned char *st;
+  long temp;
+
+  assert(cx >= 0 && cx < 4096);
+  st = s->st + cx;
+  ss = *st & 0x7f;
+  assert(ss < 113);
+  lsz = lsztab[ss];
+
+#if 0
+  fprintf(stderr, "pix = %d, cx = %d, mps = %d, st = %3d, lsz = 0x%04x, "
+	  "a = 0x%05lx, c = 0x%08lx, ct = %2d, buf = 0x%02x\n",
+	  pix, cx, !!(s->st[cx] & 0x80), ss, lsz, s->a, s->c, s->ct,
+	  s->buffer);
+#endif
+
+  if (((pix << 7) ^ s->st[cx]) & 0x80) {
+    /* encode the less probable symbol */
+    if ((s->a -= lsz) >= lsz) {
+      /* If the interval size (lsz) for the less probable symbol (LPS)
+       * is larger than the interval size for the MPS, then exchange
+       * the two symbols for coding efficiency, otherwise code the LPS
+       * as usual: */
+      s->c += s->a;
+      s->a = lsz;
+    }
+    /* Check whether MPS/LPS exchange is necessary
+     * and chose next probability estimator status */
+    *st &= 0x80;
+    *st ^= nlpstab[ss];
+  } else {
+    /* encode the more probable symbol */
+    if ((s->a -= lsz) & 0xffff8000L)
+      return;   /* A >= 0x8000 -> ready, no renormalization required */
+    if (s->a < lsz) {
+      /* If the interval size (lsz) for the less probable symbol (LPS)
+       * is larger than the interval size for the MPS, then exchange
+       * the two symbols for coding efficiency: */
+      s->c += s->a;
+      s->a = lsz;
+    }
+    /* chose next probability estimator status */
+    *st &= 0x80;
+    *st |= nmpstab[ss];
+  }
+
+  /* renormalization of coding interval */
+  do {
+    s->a <<= 1;
+    s->c <<= 1;
+    --s->ct;
+    if (s->ct == 0) {
+      /* another byte is ready for output */
+      temp = s->c >> 19;
+      if (temp & 0xffffff00L) {
+	/* handle overflow over all buffered 0xff bytes */
+	if (s->buffer >= 0) {
+	  ++s->buffer;
+	  s->byte_out(s->buffer, s->file);
+	  if (s->buffer == MARKER_ESC)
+	    s->byte_out(MARKER_STUFF, s->file);
+	}
+	for (; s->sc; --s->sc)
+	  s->byte_out(0x00, s->file);
+	s->buffer = temp & 0xff;  /* new output byte, might overflow later */
+	assert(s->buffer != 0xff);
+	/* can s->buffer really never become 0xff here? */
+      } else if (temp == 0xff) {
+	/* buffer 0xff byte (which might overflow later) */
+	++s->sc;
+      } else {
+	/* output all buffered 0xff bytes, they will not overflow any more */
+	if (s->buffer >= 0)
+	  s->byte_out(s->buffer, s->file);
+	for (; s->sc; --s->sc) {
+	  s->byte_out(0xff, s->file);
+	  s->byte_out(MARKER_STUFF, s->file);
+	}
+	s->buffer = temp;   /* buffer new output byte (can still overflow) */
+      }
+      s->c &= 0x7ffffL;
+      s->ct = 8;
+    }
+  } while (s->a < 0x8000);
+ 
+  return;
+}
+
+
+void arith_decode_init(struct jbg_ardec_state *s, int reuse_st)
+{
+  int i;
+  
+  if (!reuse_st)
+    for (i = 0; i < 4096; s->st[i++] = 0) ;
+  s->c = 0;
+  s->a = 1;
+  s->ct = 0;
+  s->startup = 1;
+  s->nopadding = 0;
+  return;
+}
+
+/*
+ * Decode and return one symbol from the provided PSCD byte stream
+ * that starts in s->pscd_ptr and ends in the byte before s->pscd_end.
+ * The context cx is a 12-bit integer in the range 0..4095. This
+ * function will advance s->pscd_ptr each time it has consumed all
+ * information from that PSCD byte.
+ *
+ * If a symbol has been decoded successfully, the return value will be
+ * 0 or 1 (depending on the symbol).
+ *
+ * If the decoder was not able to decode a symbol from the provided
+ * PSCD, then the return value will be -1, and two cases can be
+ * distinguished:
+ *
+ * s->pscd_ptr == s->pscd_end:
+ *
+ *   The decoder has used up all information in the provided PSCD
+ *   bytes. Further PSCD bytes have to be provided (via new values of
+ *   s->pscd_ptr and/or s->pscd_end) before another symbol can be
+ *   decoded.
+ *
+ * s->pscd_ptr == s->pscd_end - 1:
+ * 
+ *   The decoder has used up all provided PSCD bytes except for the
+ *   very last byte, because that has the value 0xff. The decoder can
+ *   at this point not yet tell whether this 0xff belongs to a
+ *   MARKER_STUFF sequence or marks the end of the PSCD. Further PSCD
+ *   bytes have to be provided (via new values of s->pscd_ptr and/or
+ *   s->pscd_end), including the not yet processed 0xff byte, before
+ *   another symbol can be decoded successfully.
+ *
+ * If s->nopadding != 0, the decoder will return -2 when it reaches
+ * the first two bytes of the marker segment that follows (and
+ * terminates) the PSCD, but before decoding the first symbol that
+ * depends on a bit in the input data that could have been the result
+ * of zero padding, and might, therefore, never have been encoded.
+ * This gives the caller the opportunity to lookahead early enough
+ * beyond a terminating SDNORM/SDRST for a trailing NEWLEN (as
+ * required by T.85) before decoding remaining symbols. Call the
+ * decoder again afterwards as often as necessary (leaving s->pscd_ptr
+ * pointing to the start of the marker segment) to retrieve any
+ * required remaining symbols that might depend on padding.
+ *
+ * [Note that each PSCD can be decoded into an infinitely long
+ * sequence of symbols, because the encoder might have truncated away
+ * an arbitrarily long sequence of trailing 0x00 bytes, which the
+ * decoder will append automatically as needed when it reaches the end
+ * of the PSCD. Therefore, the decoder cannot report any end of the
+ * symbol sequence and other means (external to the PSCD and
+ * arithmetic decoding process) are needed to determine that.]
+ */
+
+int arith_decode(struct jbg_ardec_state *s, int cx)
+{
+  register unsigned lsz, ss;
+  register unsigned char *st;
+  int pix;
+
+  /* renormalization */
+  while (s->a < 0x8000 || s->startup) {
+    while (s->ct <= 8 && s->ct >= 0) {
+      /* first we can move a new byte into s->c */
+      if (s->pscd_ptr >= s->pscd_end) {
+	return -1;  /* more bytes needed */
+      }
+      if (*s->pscd_ptr == 0xff) 
+	if (s->pscd_ptr + 1 >= s->pscd_end) {
+	  return -1; /* final 0xff byte not processed */
+	} else {
+	  if (*(s->pscd_ptr + 1) == MARKER_STUFF) {
+	    s->c |= 0xffL << (8 - s->ct);
+	    s->ct += 8;
+	    s->pscd_ptr += 2;
+	  } else {
+	    s->ct = -1; /* start padding with zero bytes */
+	    if (s->nopadding) {
+	      s->nopadding = 0;
+	      return -2; /* subsequent symbols might depend on zero padding */
+	    }
+	  }
+	}
+      else {
+	s->c |= (long)*(s->pscd_ptr++) << (8 - s->ct);
+	s->ct += 8;
+      }
+    }
+    s->c <<= 1;
+    s->a <<= 1;
+    if (s->ct >= 0) s->ct--;
+    if (s->a == 0x10000L)
+      s->startup = 0;
+  }
+
+  st = s->st + cx;
+  ss = *st & 0x7f;
+  assert(ss < 113);
+  lsz = lsztab[ss];
+
+#if 0
+  fprintf(stderr, "cx = %d, mps = %d, st = %3d, lsz = 0x%04x, a = 0x%05lx, "
+	  "c = 0x%08lx, ct = %2d\n",
+	  cx, !!(s->st[cx] & 0x80), ss, lsz, s->a, s->c, s->ct);
+#endif
+
+  if ((s->c >> 16) < (s->a -= lsz))
+    if (s->a & 0xffff8000L)
+      return *st >> 7;
+    else {
+      /* MPS_EXCHANGE */
+      if (s->a < lsz) {
+	pix = 1 - (*st >> 7);
+	/* Check whether MPS/LPS exchange is necessary
+	 * and chose next probability estimator status */
+	*st &= 0x80;
+	*st ^= nlpstab[ss];
+      } else {
+	pix = *st >> 7;
+	*st &= 0x80;
+	*st |= nmpstab[ss];
+      }
+    }
+  else {
+    /* LPS_EXCHANGE */
+    if (s->a < lsz) {
+      s->c -= s->a << 16;
+      s->a = lsz;
+      pix = *st >> 7;
+      *st &= 0x80;
+      *st |= nmpstab[ss];
+    } else {
+      s->c -= s->a << 16;
+      s->a = lsz;
+      pix = 1 - (*st >> 7);
+      /* Check whether MPS/LPS exchange is necessary
+       * and chose next probability estimator status */
+      *st &= 0x80;
+      *st ^= nlpstab[ss];
+    }
+  }
+
+  return pix;
+}