summary refs log tree commit diff
path: root/Test/D06subscript.ztst
blob: f91d62f2faa69ac1f375f245666ea726c6a5b2f5 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
# Test parameter subscripting.

%prep

  s='Twinkle, twinkle, little *, [how] I [wonder] what?  You are!'
  a=('1' ']'  '?' '\2'  '\]' '\?'  '\\3' '\\]'  '\\?' '\\\4'  '\\\]' '\\\?')
  typeset -g -A A
  A=($a)

%test

  x=','
  print $s[(i)winkle] $s[(I)winkle]
  print ${s[(i)You are]} $#s
  print ${s[(r)$x,(R)$x]}
0:Scalar pattern subscripts without wildcards
>2 11
>53 60
>, twinkle, little *,

  x='*'
  print $s[(i)*] $s[(i)\*] $s[(i)$x*] $s[(i)${(q)x}*] $s[(I)$x\*]
  print $s[(r)?,(R)\?] $s[(r)\?,(R)?]
  print $s[(r)\*,(R)*]
  print $s[(r)\],(R)\[]
0:Scalar pattern subscripts with wildcards
>1 26 1 26 26
>Twinkle, twinkle, little *, [how] I [wonder] what? ?  You are!
>*, [how] I [wonder] what?  You are!
>] I [

  print $s[(i)x] : $s[(I)x]
  print $s[(r)x] : $s[(R)x]
0:Scalar pattern subscripts that do not match
>61 : 0
>:

  print -R $s[$s[(i)\[]] $s[(i)$s[(r)\*]] $s[(i)${(q)s[(r)\]]}]
0:Scalar subscripting using a pattern subscript to get the index
>[ 1 33

  print -R $a[(r)?] $a[(R)?]
  print $a[(n:2:i)?] $a[(n:2:I)?]
  print $a[(i)\?] $a[(I)\?]
  print $a[(i)*] $a[(i)\*]
0:Array pattern subscripts
>1 ?
>2 2
>3 3
>1 13

  # It'd be nice to do some of the following with (r), but we run into
  # limitations of the ztst script parsing of backslashes in the output.
  print -R $a[(i)\\\\?] $a[(i)\\\\\?]
  print -R $a[(i)\\\\\\\\?] $a[(i)\\\\\\\\\?]
  print -R ${a[(i)\\\\\\\\?]} ${a[(i)\\\\\\\\\?]}
  print -R "$a[(i)\\\\\\\\?] $a[(i)\\\\\\\\\?]"
  print -R $a[(i)\]] $a[(i)\\\\\]] $a[(i)\\\\\\\\\]] $a[(i)\\\\\\\\\\\\\]]
  print -R $a[(i)${(q)a[5]}] $a[(i)${(q)a[8]}] $a[(i)${(q)a[11]}]
  print -R $a[(i)${a[3]}] $a[(i)${a[6]}] $a[(i)${a[9]}] $a[(i)${a[12]}]
0:Array pattern subscripts with multiple backslashes
>4 6
>7 9
>7 9
>7 9
>2 5 8 11
>5 8 11
>1 3 4 6

  print -R $A[1] $A[?] $A[\\\\3] $A[\\\]]
  print -R $A[$a[11]]
  print -R $A[${(q)a[5]}]
0:Associative array lookup (direct subscripting)
>] \2 \\] \?
>\\\?
>\\\?

  # The (o) is necessary here for predictable output ordering
  print -R $A[(I)\?] ${(o)A[(I)?]}
  print -R $A[(i)\\\\\\\\3]
  print -R $A[(I)\\\\\\\\\?] ${(o)A[(I)\\\\\\\\?]}
0:Associative array lookup (pattern subscripting)
>? 1 ?
>\\3
>\\? \\3 \\?

  print -R $A[(R)\?] : ${(o)A[(R)?]}
  print -R $A[(R)\\\\\?] ${(o)A[(R)\\\\?]} ${(o)A[(R)\\\\\?]}
  print -R ${(o)A[(R)\\\\\\\\\]]}
0:Associative array lookup (reverse subscripting)
>: ]
>\? \2 \? \?
>\\]

  eval 'A[*]=star'
1:Illegal associative array assignment
?(eval):1: A: attempt to set slice of associative array

  x='*'
  A[$x]=xstar
  A[${(q)x}]=qxstar
  print -R ${(k)A[(r)xstar]} $A[$x]
  print -R ${(k)A[(r)qxstar]} $A[${(q)x}]
  A[(e)*]=star
  A[\*]=backstar
  print -R ${(k)A[(r)star]} $A[(e)*]
  print -R ${(k)A[(r)backstar]} $A[\*]
0:Associative array assignment
>* xstar
>\* qxstar
>* star
>\* backstar

  o='['
  c=']'
  A[\]]=cbrack
  A[\[]=obrack
  A[\\\[]=backobrack
  A[\\\]]=backcbrack
  print -R $A[$o] $A[$c] $A[\[] $A[\]] $A[\\\[] $A[\\\]]
  print -R $A[(i)\[] $A[(i)\]] $A[(i)\\\\\[] $A[(i)\\\\\]]
0:Associative array keys with open and close brackets
>obrack cbrack obrack cbrack backobrack backcbrack
>[ ] \[ \]

  print -R $A[$o] $A[$s[(r)\[]]
  print -R $A[(r)$c] $A[(r)$s[(r)\]]]
  print -R $A[$A[(i)\\\\\]]]
0:Associative array lookup using a pattern subscript to get the key
>obrack obrack
>] ]
>backcbrack

  print -R ${A[${A[(r)\\\\\\\\\]]}]::=zounds}
  print -R ${A[${A[(r)\\\\\\\\\]]}]}
  print -R $A[\\\\\]]
0:Associative array substitution-assignment with reverse pattern subscript key
>zounds
>zounds
>zounds

  print -R ${(o)A[(K)\]]}
  print -R ${(o)A[(K)\\\]]}
0:Associative array keys interpreted as patterns
>\2 backcbrack cbrack star
>\\\4 \\\? star zounds

# It doesn't matter which element we get, since we never guarantee
# ordering of an associative array.  So just test the number of matches.
  array=(${(o)A[(k)\]]})
  print ${#array}
  array=(${(o)A[(k)\\\]]})
  print ${#array}
0:Associative array keys interpreted as patterns, single match
>1
>1

  typeset -g "A[one\"two\"three\"quotes]"=QQQ
  typeset -g 'A[one\"two\"three\"quotes]'=qqq
  print -R "$A[one\"two\"three\"quotes]"
  print -R $A[one\"two\"three\"quotes]
  A[one"two"three"four"quotes]=QqQq
  print -R $A[one"two"three"four"quotes]
  print -R $A[$A[(i)one\"two\"three\"quotes]]
  print -R "$A[$A[(i)one\"two\"three\"quotes]]"
0:Associative array keys with double quotes
>QQQ
>qqq
>QqQq
>qqq
>QQQ

  print ${x::=$A[$A[(i)one\"two\"three\"quotes]]}
  print $x
  print ${x::="$A[$A[(i)one\"two\"three\"quotes]]"}
  print $x
0:More keys with double quotes, used in assignment-expansion
>qqq
>qqq
>QQQ
>QQQ

  qqq=lower
  QQQ=upper
  print ${(P)A[one\"two\"three\"quotes]}
  print "${(P)A[$A[(i)one\"two\"three\"quotes]]}"
0:Keys with double quotes and the (P) expansion flag
>lower
>upper

  typeset -ga empty
  echo X${${empty##*}[-1]}X
0:Negative index applied to substition result from empty array
>XX

  print $empty[(i)] $empty[(I)]
0:(i) returns 1 for empty array, (I) returns 0.
>1 0

  array=(one two three four)
  print X$array[0]X
0:Element zero is empty if KSH_ZERO_SUBSCRIPT is off.
>XX

  array[0]=fumble
1:Can't set element zero if KSH_ZERO_SUBSCRIPT is off.
?(eval):1: array: assignment to invalid subscript range

  print X$array[(R)notfound]X
0:(R) returns empty if not found if KSH_ZERO_SUBSCRIPT is off.
>XX

  setopt KSH_ZERO_SUBSCRIPT
  print X$array[0]X
0:Element zero is element one if KSH_ZERO_SUBSCRIPT is on.
>XoneX

  array[0]=fimble
  print $array
0:Can set element zero if KSH_ZERO_SUBSCRIPT is on.
>fimble two three four

  print X$array[(R)notfound]X
0:(R) yuckily returns the first element on failure withe KSH_ZERO_SUBSCRIPT
>XfimbleX

  unsetopt KSH_ZERO_SUBSCRIPT
  array[(R)notfound,(r)notfound]=(help help here come the seventies retreads)
  print $array
0:[(R)notfound,(r)notfound] replaces the whole array
>help help here come the seventies retreads

  string="Why, if it isn't Officer Dibble"
  print "[${string[0]}][${string[1]}][${string[0,3]}]"
0:String subscripts with KSH_ZERO_SUBSCRIPT unset
>[][W][Why]

  setopt KSH_ZERO_SUBSCRIPT
  print "[${string[0]}][${string[1]}][${string[0,3]}]"
0:String subscripts with KSH_ZERO_SUBSCRIPT set
>[W][W][Why]

  unsetopt KSH_ZERO_SUBSCRIPT
  string[0,3]="Goodness"
  print $string
0:Assignment to chunk of string ignores element 0
>Goodness, if it isn't Officer Dibble

  string[0]=!
1:Can't set only element zero of string
?(eval):1: string: assignment to invalid subscript range

  string="Life,+like+a+dome+of+many-colour'd+glass"
  for delims in "()" "{}" "[]" "<>"; do
    eval 'print ${string[(ws'$delims[1]'+'$delims[2]')2]}'
    eval 'print $string[(ws'$delims[1]'+'$delims[2]')3]'
    eval 'print "$string[(ws'$delims[1]'+'$delims[2]')4]"'
  done
0:Check matched delimiters in subscripts
>like
>a
>dome
>like
>a
>dome
>like
>a
>dome
>like
>a
>dome