From 32c2ebbaa5d7927f33ee0ecf98472a71cf902cf3 Mon Sep 17 00:00:00 2001 From: Tanaka Akira Date: Thu, 15 Apr 1999 18:05:35 +0000 Subject: zsh-3.1.5 --- Src/mem.c | 1254 +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++ 1 file changed, 1254 insertions(+) create mode 100644 Src/mem.c (limited to 'Src/mem.c') diff --git a/Src/mem.c b/Src/mem.c new file mode 100644 index 000000000..1145f8c5e --- /dev/null +++ b/Src/mem.c @@ -0,0 +1,1254 @@ +/* + * mem.c - memory management + * + * This file is part of zsh, the Z shell. + * + * Copyright (c) 1992-1997 Paul Falstad + * All rights reserved. + * + * Permission is hereby granted, without written agreement and without + * license or royalty fees, to use, copy, modify, and distribute this + * software and to distribute modified versions of this software for any + * purpose, provided that the above copyright notice and the following + * two paragraphs appear in all copies of this software. + * + * In no event shall Paul Falstad or the Zsh Development Group be liable + * to any party for direct, indirect, special, incidental, or consequential + * damages arising out of the use of this software and its documentation, + * even if Paul Falstad and the Zsh Development Group have been advised of + * the possibility of such damage. + * + * Paul Falstad and the Zsh Development Group specifically disclaim any + * warranties, including, but not limited to, the implied warranties of + * merchantability and fitness for a particular purpose. The software + * provided hereunder is on an "as is" basis, and Paul Falstad and the + * Zsh Development Group have no obligation to provide maintenance, + * support, updates, enhancements, or modifications. + * + */ + +#include "zsh.mdh" +#include "mem.pro" + +/* + There are two ways to allocate memory in zsh. The first way is + to call zalloc/zcalloc, which call malloc/calloc directly. It + is legal to call realloc() or free() on memory allocated this way. + The second way is to call halloc/hcalloc, which allocates memory + from one of the memory pools on the heap stack. Such memory pools + will automatically created when the heap allocation routines are + called. To be sure that they are freed at appropriate times + one should call pushheap() before one starts using heaps and + popheap() after that (when the memory allocated on the heaps since + the last pushheap() isn't needed anymore). + pushheap() saves the states of all currently allocated heaps and + popheap() resets them to the last state saved and destroys the + information about that state. If you called pushheap() and + allocated some memory on the heaps and then come to a place where + you don't need the allocated memory anymore but you still want + to allocate memory on the heap, you should call freeheap(). This + works like popheap(), only that it doesn't free the information + about the heap states (i.e. the heaps are like after the call to + pushheap() and you have to call popheap some time later). + + Memory allocated in this way does not have to be freed explicitly; + it will all be freed when the pool is destroyed. In fact, + attempting to free this memory may result in a core dump. + The pair of pointers ncalloc and alloc may point to either + zalloc & zcalloc or halloc & hcalloc; permalloc() sets them to the + former, and heapalloc() sets them to the latter. This can be useful. + For example, the dupstruct() routine duplicates a syntax tree, + allocating the new memory for the tree using alloc(). If you want + to duplicate a structure for a one-time use (i.e. to execute the list + in a for loop), call heapalloc(), then dupstruct(). If you want + to duplicate a structure in order to preserve it (i.e. a function + definition), call permalloc(), then dupstruct(). + + If we use zsh's own allocator we use a simple trick to avoid that + the (*real*) heap fills up with empty zsh-heaps: we allocate a + large block of memory before allocating a heap pool, this memory + is freed again immediately after the pool is allocated. If there + are only small blocks on the free list this guarantees that the + memory for the pool is at the end of the memory which means that + we can give it back to the system when the pool is freed. +*/ + +/* != 0 if we are allocating in the heaplist */ + +/**/ +int useheap; + +/* Current allocation pointers. ncalloc() is either zalloc() or halloc(); * + * alloc() is either zcalloc() or hcalloc(). */ + +/**/ +void *(*ncalloc) _((size_t)), *(*alloc) _((size_t)); + +#ifdef ZSH_MEM_WARNING +# ifndef DEBUG +# define DEBUG 1 +# endif +#endif + +#if defined(ZSH_MEM) && defined(ZSH_MEM_DEBUG) + +static int h_m[1025], h_push, h_pop, h_free; + +#endif + +#define H_ISIZE sizeof(long) +#define HEAPSIZE (8192 - H_ISIZE) +#define HEAP_ARENA_SIZE (HEAPSIZE - sizeof(struct heap)) +#define HEAPFREE (16384 - H_ISIZE) + +/* set default allocation to heap stack */ + +/**/ +int +global_heapalloc(void) +{ + int luh = useheap; + + alloc = hcalloc; + ncalloc = halloc; + useheap = 1; + return luh; +} + +/* set default allocation to malloc() */ + +/**/ +int +global_permalloc(void) +{ + int luh = useheap; + + alloc = zcalloc; + ncalloc = zalloc; + useheap = 0; + return luh; +} + +/* heappush saves the current heap state using this structure */ + +struct heapstack { + struct heapstack *next; /* next one in list for this heap */ + size_t used; +}; + +/* A zsh heap. */ + +struct heap { + struct heap *next; /* next one */ + size_t used; /* bytes used from the heap */ + struct heapstack *sp; /* used by pushheap() to save the value used */ +#define arena(X) ((char *) (X) + sizeof(struct heap)) +}; + +/* list of zsh heap */ + +static Heap heaps; + +/* save states of zsh heaps */ + +/**/ +void +pushheap(void) +{ + Heap h; + Heapstack hs; + +#if defined(ZSH_MEM) && defined(ZSH_MEM_DEBUG) + h_push++; +#endif + + for (h = heaps; h; h = h->next) { + DPUTS(!h->used, "BUG: empty heap"); + hs = (Heapstack) zalloc(sizeof(*hs)); + hs->next = h->sp; + h->sp = hs; + hs->used = h->used; + } +} + +/* reset heaps to previous state */ + +/**/ +void +freeheap(void) +{ + Heap h, hn, hl = NULL; + +#if defined(ZSH_MEM) && defined(ZSH_MEM_DEBUG) + h_free++; +#endif + for (h = heaps; h; h = hn) { + hn = h->next; + if (h->sp) { +#ifdef ZSH_MEM_DEBUG + memset(arena(h) + h->sp->used, 0xff, h->used - h->sp->used); +#endif + h->used = h->sp->used; + hl = h; + } else + zfree(h, HEAPSIZE); + } + if (hl) + hl->next = NULL; + else + heaps = NULL; +} + +/* reset heap to previous state and destroy state information */ + +/**/ +void +popheap(void) +{ + Heap h, hn, hl = NULL; + Heapstack hs; + +#if defined(ZSH_MEM) && defined(ZSH_MEM_DEBUG) + h_pop++; +#endif + + for (h = heaps; h; h = hn) { + hn = h->next; + if ((hs = h->sp)) { + h->sp = hs->next; +#ifdef ZSH_MEM_DEBUG + memset(arena(h) + hs->used, 0xff, h->used - hs->used); +#endif + h->used = hs->used; + zfree(hs, sizeof(*hs)); + + hl = h; + } else + zfree(h, HEAPSIZE); + } + if (hl) + hl->next = NULL; + else + heaps = NULL; +} + +/* allocate memory from the current memory pool */ + +/**/ +void * +halloc(size_t size) +{ + Heap h; + size_t n; + + size = (size + H_ISIZE - 1) & ~(H_ISIZE - 1); + +#if defined(ZSH_MEM) && defined(ZSH_MEM_DEBUG) + h_m[size < 1024 ? (size / H_ISIZE) : 1024]++; +#endif + + /* find a heap with enough free space */ + + for (h = heaps; h; h = h->next) { + if (HEAP_ARENA_SIZE >= (n = size + h->used)) { + h->used = n; + return arena(h) + n - size; + } + } + + { + Heap hp; + /* not found, allocate new heap */ +#ifdef ZSH_MEM + static int called = 0; + void *foo = called ? (void *)malloc(HEAPFREE) : NULL; + /* tricky, see above */ +#endif + + queue_signals(); + n = HEAP_ARENA_SIZE > size ? HEAPSIZE : size + sizeof(*h); + for (hp = NULL, h = heaps; h; hp = h, h = h->next); + + h = (Heap) zalloc(n); + +#ifdef ZSH_MEM + if (called) + zfree(foo, HEAPFREE); + called = 1; +#endif + + h->used = size; + h->next = NULL; + h->sp = NULL; + + if (hp) + hp->next = h; + else + heaps = h; + + unqueue_signals(); + return arena(h); + } +} + +/**/ +void * +hrealloc(char *p, size_t old, size_t new) +{ + Heap h, ph; + + old = (old + H_ISIZE - 1) & ~(H_ISIZE - 1); + new = (new + H_ISIZE - 1) & ~(H_ISIZE - 1); + + if (old == new) + return p; + if (!old && !p) + return halloc(new); + + /* find the heap with p */ + + for (h = heaps, ph = NULL; h; ph = h, h = h->next) + if (p >= arena(h) && p < arena(h) + HEAP_ARENA_SIZE) + break; + + DPUTS(!h, "BUG: hrealloc() called for non-heap memory."); + DPUTS(h->sp && arena(h) + h->sp->used > p, + "BUG: hrealloc() wants to realloc pushed memory"); + + if (p + old < arena(h) + h->used) { + if (new > old) { + char *ptr = (char *) halloc(new); + memcpy(ptr, p, old); + return ptr; + } else + return new ? p : NULL; + } + + DPUTS(p + old != arena(h) + h->used, "BUG: hrealloc more than allocated"); + + if (p == arena(h)) { + if (!new) { + if (ph) + ph->next = h->next; + else + heaps = h->next; + zfree(h, HEAPSIZE); + return NULL; + } + if (old > HEAP_ARENA_SIZE || new > HEAP_ARENA_SIZE) { + size_t n = HEAP_ARENA_SIZE > new ? HEAPSIZE : new + sizeof(*h); + + if (ph) + ph->next = h = (Heap) realloc(h, n); + else + heaps = h = (Heap) realloc(h, n); + } + h->used = new; + return arena(h); + } + DPUTS(h->used > HEAP_ARENA_SIZE, "BUG: hrealloc at invalid address"); + if (h->used + (new - old) <= HEAP_ARENA_SIZE) { + h->used += new - old; + return p; + } else { + char *t = halloc(new); + memcpy(t, p, old > new ? new : old); + h->used -= old; +#ifdef ZSH_MEM_DEBUG + memset(p, 0xff, old); +#endif + return t; + } +} + +/* allocate memory from the current memory pool and clear it */ + +/**/ +void * +hcalloc(size_t size) +{ + void *ptr; + + ptr = halloc(size); + memset(ptr, 0, size); + return ptr; +} + +/* allocate permanent memory */ + +/**/ +void * +zalloc(size_t size) +{ + void *ptr; + + if (!size) + size = 1; + if (!(ptr = (void *) malloc(size))) { + zerr("fatal error: out of memory", NULL, 0); + exit(1); + } + + return ptr; +} + +/**/ +void * +zcalloc(size_t size) +{ + void *ptr; + + if (!size) + size = 1; + if (!(ptr = (void *) malloc(size))) { + zerr("fatal error: out of memory", NULL, 0); + exit(1); + } + memset(ptr, 0, size); + + return ptr; +} + +/* This front-end to realloc is used to make sure we have a realloc * + * that conforms to POSIX realloc. Older realloc's can fail if * + * passed a NULL pointer, but POSIX realloc should handle this. A * + * better solution would be for configure to check if realloc is * + * POSIX compliant, but I'm not sure how to do that. */ + +/**/ +void * +zrealloc(void *ptr, size_t size) +{ + if (ptr) { + if (size) { + /* Do normal realloc */ + if (!(ptr = (void *) realloc(ptr, size))) { + zerr("fatal error: out of memory", NULL, 0); + exit(1); + } + return ptr; + } + else + /* If ptr is not NULL, but size is zero, * + * then object pointed to is freed. */ + free(ptr); + } else { + /* If ptr is NULL, then behave like malloc */ + return malloc(size); + } + + return NULL; +} + +/**/ +char * +dupstring(const char *s) +{ + char *t; + + if (!s) + return NULL; + t = (char *)ncalloc(strlen((char *)s) + 1); + strcpy(t, s); + return t; +} + +/**/ +char * +ztrdup(const char *s) +{ + char *t; + + if (!s) + return NULL; + t = (char *)zalloc(strlen((char *)s) + 1); + strcpy(t, s); + return t; +} + +#ifdef ZSH_MEM + +/* + Below is a simple segment oriented memory allocator for systems on + which it is better than the system's one. Memory is given in blocks + aligned to an integer multiple of sizeof(long) (4 bytes on most machines, + but 8 bytes on e.g. a dec alpha). Each block is preceded by a header + which contains the length of the data part (in bytes). In allocated + blocks only this field of the structure m_hdr is senseful. In free + blocks the second field (next) is a pointer to the next free segment + on the free list. + + On top of this simple allocator there is a second allocator for small + chunks of data. It should be both faster and less space-consuming than + using the normal segment mechanism for such blocks. + For the first M_NSMALL-1 possible sizes memory is allocated in arrays + that can hold M_SNUM blocks. Each array is stored in one segment of the + main allocator. In these segments the third field of the header structure + (free) contains a pointer to the first free block in the array. The + last field (used) gives the number of already used blocks in the array. + + If the macro name ZSH_MEM_DEBUG is defined, some information about the memory + usage is stored. This information can than be viewed by calling the + builtin `mem' (which is only available if ZSH_MEM_DEBUG is set). + + If ZSH_MEM_WARNING is defined, error messages are printed in case of errors. + + If ZSH_SECURE_FREE is defined, free() checks if the given address is really + one that was returned by malloc(), it ignores it if it wasn't (printing + an error message if ZSH_MEM_WARNING is also defined). +*/ +#if !defined(__hpux) && !defined(DGUX) && !defined(__osf__) +# if defined(_BSD) +# ifndef HAVE_BRK_PROTO + extern int brk _((caddr_t)); +# endif +# ifndef HAVE_SBRK_PROTO + extern caddr_t sbrk _((int)); +# endif +# else +# ifndef HAVE_BRK_PROTO + extern int brk _((void *)); +# endif +# ifndef HAVE_SBRK_PROTO + extern void *sbrk _((int)); +# endif +# endif +#endif + +#if defined(_BSD) && !defined(STDC_HEADERS) +# define FREE_RET_T int +# define FREE_ARG_T char * +# define FREE_DO_RET +# define MALLOC_RET_T char * +# define MALLOC_ARG_T size_t +#else +# define FREE_RET_T void +# define FREE_ARG_T void * +# define MALLOC_RET_T void * +# define MALLOC_ARG_T size_t +#endif + +/* structure for building free list in blocks holding small blocks */ + +struct m_shdr { + struct m_shdr *next; /* next one on free list */ +}; + +struct m_hdr { + long len; /* length of memory block */ + struct m_hdr *next; /* if free: next on free list + if block of small blocks: next one with + small blocks of same size*/ + struct m_shdr *free; /* if block of small blocks: free list */ + long used; /* if block of small blocks: number of used + blocks */ +}; + + +/* alignment for memory blocks */ + +#define M_ALIGN (sizeof(long)) + +/* length of memory header, length of first field of memory header and + minimal size of a block left free (if we allocate memory and take a + block from the free list that is larger than needed, it must have at + least M_MIN extra bytes to be splitted; if it has, the rest is put on + the free list) */ + +#define M_HSIZE (sizeof(struct m_hdr)) +#define M_ISIZE (sizeof(long)) +#define M_MIN (2 * M_ISIZE) + +/* a pointer to the last free block, a pointer to the free list (the blocks + on this list are kept in order - lowest address first) */ + +static struct m_hdr *m_lfree, *m_free; + +/* system's pagesize */ + +static long m_pgsz = 0; + +/* the highest and the lowest valid memory addresses, kept for fast validity + checks in free() and to find out if and when we can give memory back to + the system */ + +static char *m_high, *m_low; + +/* Management of blocks for small blocks: + Such blocks are kept in lists (one list for each of the sizes that are + allocated in such blocks). The lists are stored in the m_small array. + M_SIDX() calculates the index into this array for a given size. M_SNUM + is the size (in small blocks) of such blocks. M_SLEN() calculates the + size of the small blocks held in a memory block, given a pointer to the + header of it. M_SBLEN() gives the size of a memory block that can hold + an array of small blocks, given the size of these small blocks. M_BSLEN() + caculates the size of the small blocks held in a memory block, given the + length of that block (including the header of the memory block. M_NSMALL + is the number of possible block sizes that small blocks should be used + for. */ + + +#define M_SIDX(S) ((S) / M_ISIZE) +#define M_SNUM 50 +#define M_SLEN(M) ((M)->len / M_SNUM) +#define M_SBLEN(S) ((S) * M_SNUM + sizeof(struct m_shdr *) + \ + sizeof(long) + sizeof(struct m_hdr *)) +#define M_BSLEN(S) (((S) - sizeof(struct m_shdr *) - \ + sizeof(long) - sizeof(struct m_hdr *)) / M_SNUM) +#define M_NSMALL 8 + +static struct m_hdr *m_small[M_NSMALL]; + +#ifdef ZSH_MEM_DEBUG + +static int m_s = 0, m_b = 0; +static int m_m[1025], m_f[1025]; + +static struct m_hdr *m_l; + +#endif /* ZSH_MEM_DEBUG */ + +MALLOC_RET_T +malloc(MALLOC_ARG_T size) +{ + struct m_hdr *m, *mp, *mt; + long n, s, os = 0; + struct heap *h, *hp, *hf = NULL, *hfp = NULL; + + /* some systems want malloc to return the highest valid address plus one + if it is called with an argument of zero */ + + if (!size) + return (MALLOC_RET_T) m_high; + + queue_signals(); /* just queue signals rather than handling them */ + + /* first call, get page size */ + + if (!m_pgsz) { + +#ifdef _SC_PAGESIZE + m_pgsz = sysconf(_SC_PAGESIZE); /* SVR4 */ +#else +# ifdef _SC_PAGE_SIZE + m_pgsz = sysconf(_SC_PAGE_SIZE); /* HPUX */ +# else + m_pgsz = getpagesize(); +# endif +#endif + + m_free = m_lfree = NULL; + } + size = (size + M_ALIGN - 1) & ~(M_ALIGN - 1); + + /* Do we need a small block? */ + + if ((s = M_SIDX(size)) && s < M_NSMALL) { + /* yep, find a memory block with free small blocks of the + appropriate size (if we find it in this list, this means that + it has room for at least one more small block) */ + for (mp = NULL, m = m_small[s]; m && !m->free; mp = m, m = m->next); + + if (m) { + /* we found one */ + struct m_shdr *sh = m->free; + + m->free = sh->next; + m->used++; + + /* if all small blocks in this block are allocated, the block is + put at the end of the list blocks wth small blocks of this + size (i.e., we try to keep blocks with free blocks at the + beginning of the list, to make the search faster */ + + if (m->used == M_SNUM && m->next) { + for (mt = m; mt->next; mt = mt->next); + + mt->next = m; + if (mp) + mp->next = m->next; + else + m_small[s] = m->next; + m->next = NULL; + } +#ifdef ZSH_MEM_DEBUG + m_m[size / M_ISIZE]++; +#endif + + unqueue_signals(); + return (MALLOC_RET_T) sh; + } + /* we still want a small block but there were no block with a free + small block of the requested size; so we use the real allocation + routine to allocate a block for small blocks of this size */ + os = size; + size = M_SBLEN(size); + } else + s = 0; + +/* search the free list for an block of at least the requested size */ + for (mp = NULL, m = m_free; m && m->len < size; mp = m, m = m->next); + + /* if there is an empty zsh heap at a lower address we steal it and take + the memory from it, putting the rest on the free list (remember + that the blocks on the free list are ordered) */ + + for (hp = NULL, h = heaps; h; hp = h, h = h->next) + if (!h->used && + (!hf || h < hf) && + (!m || ((char *)m) > ((char *)h))) + hf = h, hfp = hp; + + if (hf) { + /* we found such a heap */ + Heapstack hso, hsn; + + /* delete structures on the list holding the heap states */ + for (hso = hf->sp; hso; hso = hsn) { + hsn = hso->next; + zfree(hso, sizeof(*hso)); + } + /* take it from the list of heaps */ + if (hfp) + hfp->next = hf->next; + else + heaps = hf->next; + /* now we simply free it and than search the free list again */ + zfree(hf, HEAPSIZE); + + for (mp = NULL, m = m_free; m && m->len < size; mp = m, m = m->next); + } + if (!m) { + /* no matching free block was found, we have to request new + memory from the system */ + n = (size + M_HSIZE + m_pgsz - 1) & ~(m_pgsz - 1); + + if (((char *)(m = (struct m_hdr *)sbrk(n))) == ((char *)-1)) { + DPUTS(1, "MEM: allocation error at sbrk."); + unqueue_signals(); + return NULL; + } + /* set m_low, for the check in free() */ + if (!m_low) + m_low = (char *)m; + +#ifdef ZSH_MEM_DEBUG + m_s += n; + + if (!m_l) + m_l = m; +#endif + + /* save new highest address */ + m_high = ((char *)m) + n; + + /* initialize header */ + m->len = n - M_ISIZE; + m->next = NULL; + + /* put it on the free list and set m_lfree pointing to it */ + if ((mp = m_lfree)) + m_lfree->next = m; + m_lfree = m; + } + if ((n = m->len - size) > M_MIN) { + /* the block we want to use has more than M_MIN bytes plus the + number of bytes that were requested; we split it in two and + leave the rest on the free list */ + struct m_hdr *mtt = (struct m_hdr *)(((char *)m) + M_ISIZE + size); + + mtt->len = n - M_ISIZE; + mtt->next = m->next; + + m->len = size; + + /* put the rest on the list */ + if (m_lfree == m) + m_lfree = mtt; + + if (mp) + mp->next = mtt; + else + m_free = mtt; + } else if (mp) { + /* the block we found wasn't the first one on the free list */ + if (m == m_lfree) + m_lfree = mp; + mp->next = m->next; + } else { + /* it was the first one */ + m_free = m->next; + if (m == m_lfree) + m_lfree = m_free; + } + + if (s) { + /* we are allocating a block that should hold small blocks */ + struct m_shdr *sh, *shn; + + /* build the free list in this block and set `used' filed */ + m->free = sh = (struct m_shdr *)(((char *)m) + + sizeof(struct m_hdr) + os); + + for (n = M_SNUM - 2; n--; sh = shn) + shn = sh->next = sh + s; + sh->next = NULL; + + m->used = 1; + + /* put the block on the list of blocks holding small blocks if + this size */ + m->next = m_small[s]; + m_small[s] = m; + +#ifdef ZSH_MEM_DEBUG + m_m[os / M_ISIZE]++; +#endif + + unqueue_signals(); + return (MALLOC_RET_T) (((char *)m) + sizeof(struct m_hdr)); + } +#ifdef ZSH_MEM_DEBUG + m_m[m->len < (1024 * M_ISIZE) ? (m->len / M_ISIZE) : 1024]++; +#endif + + unqueue_signals(); + return (MALLOC_RET_T) & m->next; +} + +/* this is an internal free(); the second argument may, but need not hold + the size of the block the first argument is pointing to; if it is the + right size of this block, freeing it will be faster, though; the value + 0 for this parameter means: `don't know' */ + +/**/ +void +zfree(void *p, int sz) +{ + struct m_hdr *m = (struct m_hdr *)(((char *)p) - M_ISIZE), *mp, *mt = NULL; + int i; +# ifdef DEBUG + int osz = sz; +# endif + +#ifdef ZSH_SECURE_FREE + sz = 0; +#else + sz = (sz + M_ALIGN - 1) & ~(M_ALIGN - 1); +#endif + + if (!p) + return; + + /* first a simple check if the given address is valid */ + if (((char *)p) < m_low || ((char *)p) > m_high || + ((long)p) & (M_ALIGN - 1)) { + DPUTS(1, "BUG: attempt to free storage at invalid address"); + return; + } + + queue_signals(); + + fr_rec: + + if ((i = sz / M_ISIZE) < M_NSMALL || !sz) + /* if the given sizes says that it is a small block, find the + memory block holding it; we search all blocks with blocks + of at least the given size; if the size parameter is zero, + this means, that all blocks are searched */ + for (; i < M_NSMALL; i++) { + for (mp = NULL, mt = m_small[i]; + mt && (((char *)mt) > ((char *)p) || + (((char *)mt) + mt->len) < ((char *)p)); + mp = mt, mt = mt->next); + + if (mt) { + /* we found the block holding the small block */ + struct m_shdr *sh = (struct m_shdr *)p; + +#ifdef ZSH_SECURE_FREE + struct m_shdr *sh2; + + /* check if the given address is equal to the address of + the first small block plus an integer multiple of the + block size */ + if ((((char *)p) - (((char *)mt) + sizeof(struct m_hdr))) % + M_BSLEN(mt->len)) { + + DPUTS(1, "BUG: attempt to free storage at invalid address"); + unqueue_signals(); + return; + } + /* check, if the address is on the (block-intern) free list */ + for (sh2 = mt->free; sh2; sh2 = sh2->next) + if (((char *)p) == ((char *)sh2)) { + + DPUTS(1, "BUG: attempt to free already free storage"); + unqueue_signals(); + return; + } +#endif + DPUTS(M_BSLEN(mt->len) < osz, + "BUG: attempt to free more than allocated."); + +#ifdef ZSH_MEM_DEBUG + m_f[M_BSLEN(mt->len) / M_ISIZE]++; + memset(sh, 0xff, M_BSLEN(mt->len)); +#endif + + /* put the block onto the free list */ + sh->next = mt->free; + mt->free = sh; + + if (--mt->used) { + /* if there are still used blocks in this block, we + put it at the beginning of the list with blocks + holding small blocks of the same size (since we + know that there is at least one free block in it, + this will make allocation of small blocks faster; + it also guarantees that long living memory blocks + are preferred over younger ones */ + if (mp) { + mp->next = mt->next; + mt->next = m_small[i]; + m_small[i] = mt; + } + unqueue_signals(); + return; + } + /* if there are no more used small blocks in this + block, we free the whole block */ + if (mp) + mp->next = mt->next; + else + m_small[i] = mt->next; + + m = mt; + p = (void *) & m->next; + + break; + } else if (sz) { + /* if we didn't find a block and a size was given, try it + again as if no size were given */ + sz = 0; + goto fr_rec; + } + } +#ifdef ZSH_MEM_DEBUG + if (!mt) + m_f[m->len < (1024 * M_ISIZE) ? (m->len / M_ISIZE) : 1024]++; +#endif + +#ifdef ZSH_SECURE_FREE + /* search all memory blocks, if one of them is at the given address */ + for (mt = (struct m_hdr *)m_low; + ((char *)mt) < m_high; + mt = (struct m_hdr *)(((char *)mt) + M_ISIZE + mt->len)) + if (((char *)p) == ((char *)&mt->next)) + break; + + /* no block was found at the given address */ + if (((char *)mt) >= m_high) { + DPUTS(1, "BUG: attempt to free storage at invalid address"); + unqueue_signals(); + return; + } +#endif + + /* see if the block is on the free list */ + for (mp = NULL, mt = m_free; mt && mt < m; mp = mt, mt = mt->next); + + if (m == mt) { + /* it is, ouch! */ + DPUTS(1, "BUG: attempt to free already free storage"); + unqueue_signals(); + return; + } + DPUTS(m->len < osz, "BUG: attempt to free more than allocated"); +#ifdef ZSH_MEM_DEBUG + memset(p, 0xff, m->len); +#endif + if (mt && ((char *)mt) == (((char *)m) + M_ISIZE + m->len)) { + /* the block after the one we are freeing is free, we put them + together */ + m->len += mt->len + M_ISIZE; + m->next = mt->next; + + if (mt == m_lfree) + m_lfree = m; + } else + m->next = mt; + + if (mp && ((char *)m) == (((char *)mp) + M_ISIZE + mp->len)) { + /* the block before the one we are freeing is free, we put them + together */ + mp->len += m->len + M_ISIZE; + mp->next = m->next; + + if (m == m_lfree) + m_lfree = mp; + } else if (mp) + /* otherwise, we just put it on the free list */ + mp->next = m; + else { + m_free = m; + if (!m_lfree) + m_lfree = m_free; + } + + /* if the block we have just freed was at the end of the process heap + and now there is more than one page size of memory, we can give + it back to the system (and we do it ;-) */ + if ((((char *)m_lfree) + M_ISIZE + m_lfree->len) == m_high && + m_lfree->len >= m_pgsz + M_MIN) { + long n = (m_lfree->len - M_MIN) & ~(m_pgsz - 1); + + m_lfree->len -= n; + if (brk(m_high -= n) == -1) + DPUTS(1, "MEM: allocation error at brk."); + +#ifdef ZSH_MEM_DEBUG + m_b += n; +#endif + } + unqueue_signals(); +} + +FREE_RET_T +free(FREE_ARG_T p) +{ + zfree(p, 0); /* 0 means: size is unknown */ + +#ifdef FREE_DO_RET + return 0; +#endif +} + +/* this one is for strings (and only strings, real strings, real C strings, + those that have a zero byte at the end) */ + +/**/ +void +zsfree(char *p) +{ + if (p) + zfree(p, strlen(p) + 1); +} + +MALLOC_RET_T +realloc(MALLOC_RET_T p, MALLOC_ARG_T size) +{ + struct m_hdr *m = (struct m_hdr *)(((char *)p) - M_ISIZE), *mp, *mt; + char *r; + int i, l = 0; + + /* some system..., see above */ + if (!p && size) + return (MALLOC_RET_T) malloc(size); + /* and some systems even do this... */ + if (!p || !size) + return (MALLOC_RET_T) p; + + queue_signals(); /* just queue signals caught rather than handling them */ + + /* check if we are reallocating a small block, if we do, we have + to compute the size of the block from the sort of block it is in */ + for (i = 0; i < M_NSMALL; i++) { + for (mp = NULL, mt = m_small[i]; + mt && (((char *)mt) > ((char *)p) || + (((char *)mt) + mt->len) < ((char *)p)); + mp = mt, mt = mt->next); + + if (mt) { + l = M_BSLEN(mt->len); + break; + } + } + if (!l) + /* otherwise the size of the block is in the memory just before + the given address */ + l = m->len; + + /* now allocate the new block, copy the old contents, and free the + old block */ + r = malloc(size); + memcpy(r, (char *)p, (size > l) ? l : size); + free(p); + + unqueue_signals(); + return (MALLOC_RET_T) r; +} + +MALLOC_RET_T +calloc(MALLOC_ARG_T n, MALLOC_ARG_T size) +{ + long l; + char *r; + + if (!(l = n * size)) + return (MALLOC_RET_T) m_high; + + r = malloc(l); + + memset(r, 0, l); + + return (MALLOC_RET_T) r; +} + +#ifdef ZSH_MEM_DEBUG + +/**/ +int +bin_mem(char *name, char **argv, char *ops, int func) +{ + int i, ii, fi, ui, j; + struct m_hdr *m, *mf, *ms; + char *b, *c, buf[40]; + long u = 0, f = 0; + + if (ops['v']) { + printf("The lower and the upper addresses of the heap. Diff gives\n"); + printf("the difference between them, i.e. the size of the heap.\n\n"); + } + printf("low mem %ld\t high mem %ld\t diff %ld\n", + (long)m_l, (long)m_high, (long)(m_high - ((char *)m_l))); + + if (ops['v']) { + printf("\nThe number of bytes that were allocated using sbrk() and\n"); + printf("the number of bytes that were given back to the system\n"); + printf("via brk().\n"); + } + printf("\nsbrk %d\tbrk %d\n", m_s, m_b); + + if (ops['v']) { + printf("\nInformation about the sizes that were allocated or freed.\n"); + printf("For each size that were used the number of mallocs and\n"); + printf("frees is shown. Diff gives the difference between these\n"); + printf("values, i.e. the number of blocks of that size that is\n"); + printf("currently allocated. Total is the product of size and diff,\n"); + printf("i.e. the number of bytes that are allocated for blocks of\n"); + printf("this size.\n"); + } + printf("\nsize\tmalloc\tfree\tdiff\ttotal\n"); + for (i = 0; i < 1024; i++) + if (m_m[i] || m_f[i]) + printf("%ld\t%d\t%d\t%d\t%ld\n", (long)i * M_ISIZE, m_m[i], m_f[i], + m_m[i] - m_f[i], (long)i * M_ISIZE * (m_m[i] - m_f[i])); + + if (m_m[i] || m_f[i]) + printf("big\t%d\t%d\t%d\n", m_m[i], m_f[i], m_m[i] - m_f[i]); + + if (ops['v']) { + printf("\nThe list of memory blocks. For each block the following\n"); + printf("information is shown:\n\n"); + printf("num\tthe number of this block\n"); + printf("tnum\tlike num but counted separatedly for used and free\n"); + printf("\tblocks\n"); + printf("addr\tthe address of this block\n"); + printf("len\tthe length of the block\n"); + printf("state\tthe state of this block, this can be:\n"); + printf("\t used\tthis block is used for one big block\n"); + printf("\t free\tthis block is free\n"); + printf("\t small\tthis block is used for an array of small blocks\n"); + printf("cum\tthe accumulated sizes of the blocks, counted\n"); + printf("\tseparatedly for used and free blocks\n"); + printf("\nFor blocks holding small blocks the number of free\n"); + printf("blocks, the number of used blocks and the size of the\n"); + printf("blocks is shown. For otherwise used blocks the first few\n"); + printf("bytes are shown as an ASCII dump.\n"); + } + printf("\nblock list:\nnum\ttnum\taddr\tlen\tstate\tcum\n"); + for (m = m_l, mf = m_free, ii = fi = ui = 1; ((char *)m) < m_high; + m = (struct m_hdr *)(((char *)m) + M_ISIZE + m->len), ii++) { + for (j = 0, ms = NULL; j < M_NSMALL && !ms; j++) + for (ms = m_small[j]; ms; ms = ms->next) + if (ms == m) + break; + + if (m == mf) + buf[0] = '\0'; + else if (m == ms) + sprintf(buf, "%ld %ld %ld", M_SNUM - ms->used, ms->used, + (m->len - sizeof(struct m_hdr)) / M_SNUM + 1); + + else { + for (i = 0, b = buf, c = (char *)&m->next; i < 20 && i < m->len; + i++, c++) + *b++ = (*c >= ' ' && *c < 127) ? *c : '.'; + *b = '\0'; + } + + printf("%d\t%d\t%ld\t%ld\t%s\t%ld\t%s\n", ii, + (m == mf) ? fi++ : ui++, + (long)m, m->len, + (m == mf) ? "free" : ((m == ms) ? "small" : "used"), + (m == mf) ? (f += m->len) : (u += m->len), + buf); + + if (m == mf) + mf = mf->next; + } + + if (ops['v']) { + printf("\nHere is some information about the small blocks used.\n"); + printf("For each size the arrays with the number of free and the\n"); + printf("number of used blocks are shown.\n"); + } + printf("\nsmall blocks:\nsize\tblocks (free/used)\n"); + + for (i = 0; i < M_NSMALL; i++) + if (m_small[i]) { + printf("%ld\t", (long)i * M_ISIZE); + + for (ii = 0, m = m_small[i]; m; m = m->next) { + printf("(%ld/%ld) ", M_SNUM - m->used, m->used); + if (!((++ii) & 7)) + printf("\n\t"); + } + putchar('\n'); + } + if (ops['v']) { + printf("\n\nBelow is some information about the allocation\n"); + printf("behaviour of the zsh heaps. First the number of times\n"); + printf("pushheap(), popheap(), and freeheap() were called.\n"); + } + printf("\nzsh heaps:\n\n"); + + printf("push %d\tpop %d\tfree %d\n\n", h_push, h_pop, h_free); + + if (ops['v']) { + printf("\nThe next list shows for several sizes the number of times\n"); + printf("memory of this size were taken from heaps.\n\n"); + } + printf("size\tmalloc\ttotal\n"); + for (i = 0; i < 1024; i++) + if (h_m[i]) + printf("%ld\t%d\t%ld\n", (long)i * H_ISIZE, h_m[i], + (long)i * H_ISIZE * h_m[i]); + if (h_m[1024]) + printf("big\t%d\n", h_m[1024]); + + return 0; +} + +#endif + +#else /* not ZSH_MEM */ + +/**/ +void +zfree(void *p, int sz) +{ + if (p) + free(p); +} + +/**/ +void +zsfree(char *p) +{ + if (p) + free(p); +} + +#endif -- cgit 1.4.1