1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
|
/* origin: FreeBSD /usr/src/lib/msun/src/s_tanl.c */
/*-
* Copyright (c) 2007 Steven G. Kargl
* All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions
* are met:
* 1. Redistributions of source code must retain the above copyright
* notice unmodified, this list of conditions, and the following
* disclaimer.
* 2. Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
*
* THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR
* IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES
* OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
* IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
* INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT
* NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF
* THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/
/*
* Limited testing on pseudorandom numbers drawn within [0:4e8] shows
* an accuracy of <= 1.5 ULP where 247024 values of x out of 40 million
* possibles resulted in tan(x) that exceeded 0.5 ULP (ie., 0.6%).
*/
#include "libm.h"
#if LDBL_MANT_DIG == 53 && LDBL_MAX_EXP == 1024
long double tanl(long double x)
{
return tan(x);
}
#elif (LDBL_MANT_DIG == 64 || LDBL_MANT_DIG == 113) && LDBL_MAX_EXP == 16384
long double tanl(long double x)
{
union IEEEl2bits z;
long double y[2];
unsigned n;
z.e = x;
z.bits.sign = 0;
/* If x = NaN or Inf, then tan(x) = NaN. */
if (z.bits.exp == 0x7fff)
return (x - x) / (x - x);
/* |x| < (double)pi/4 */
if (z.e < M_PI_4) {
/* |x| < 0x1p-64 */
if (z.bits.exp < 0x3fff - 64) {
/* raise inexact if x!=0 and underflow if subnormal */
FORCE_EVAL(z.bits.exp == 0 ? x/0x1p120f : x+0x1p120f);
return x;
}
return __tanl(x, 0, 0);
}
n = __rem_pio2l(x, y);
return __tanl(y[0], y[1], n&1);
}
#endif
|