1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
|
/* origin: OpenBSD /usr/src/lib/libm/src/s_catan.c */
/*
* Copyright (c) 2008 Stephen L. Moshier <steve@moshier.net>
*
* Permission to use, copy, modify, and distribute this software for any
* purpose with or without fee is hereby granted, provided that the above
* copyright notice and this permission notice appear in all copies.
*
* THE SOFTWARE IS PROVIDED "AS IS" AND THE AUTHOR DISCLAIMS ALL WARRANTIES
* WITH REGARD TO THIS SOFTWARE INCLUDING ALL IMPLIED WARRANTIES OF
* MERCHANTABILITY AND FITNESS. IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR
* ANY SPECIAL, DIRECT, INDIRECT, OR CONSEQUENTIAL DAMAGES OR ANY DAMAGES
* WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS, WHETHER IN AN
* ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS ACTION, ARISING OUT OF
* OR IN CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.
*/
/*
* Complex circular arc tangent
*
*
* SYNOPSIS:
*
* double complex catan();
* double complex z, w;
*
* w = catan (z);
*
*
* DESCRIPTION:
*
* If
* z = x + iy,
*
* then
* 1 ( 2x )
* Re w = - arctan(-----------) + k PI
* 2 ( 2 2)
* (1 - x - y )
*
* ( 2 2)
* 1 (x + (y+1) )
* Im w = - log(------------)
* 4 ( 2 2)
* (x + (y-1) )
*
* Where k is an arbitrary integer.
*
* catan(z) = -i catanh(iz).
*
* ACCURACY:
*
* Relative error:
* arithmetic domain # trials peak rms
* DEC -10,+10 5900 1.3e-16 7.8e-18
* IEEE -10,+10 30000 2.3e-15 8.5e-17
* The check catan( ctan(z) ) = z, with |x| and |y| < PI/2,
* had peak relative error 1.5e-16, rms relative error
* 2.9e-17. See also clog().
*/
#include "libm.h"
#define MAXNUM 1.0e308
static const double DP1 = 3.14159265160560607910E0;
static const double DP2 = 1.98418714791870343106E-9;
static const double DP3 = 1.14423774522196636802E-17;
static double _redupi(double x)
{
double t;
long i;
t = x/M_PI;
if (t >= 0.0)
t += 0.5;
else
t -= 0.5;
i = t; /* the multiple */
t = i;
t = ((x - t * DP1) - t * DP2) - t * DP3;
return t;
}
double complex catan(double complex z)
{
double complex w;
double a, t, x, x2, y;
x = creal(z);
y = cimag(z);
x2 = x * x;
a = 1.0 - x2 - (y * y);
t = 0.5 * atan2(2.0 * x, a);
w = _redupi(t);
t = y - 1.0;
a = x2 + (t * t);
t = y + 1.0;
a = (x2 + t * t)/a;
w = CMPLX(w, 0.25 * log(a));
return w;
}
|