| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
| |
|
|
|
|
|
|
|
|
| |
the va_arg call for the argv[]-terminating null pointer was missing,
so this pointer was being wrongly used as the environment pointer.
issue reported by Timo Teräs. proposed patch slightly modified to
simplify the resulting code.
|
|
|
|
|
|
|
| |
bug report and patch by Michael Forney. the terminating null pointer
at the end of the gr_mem array was overwriting the beginning of the
string data, causing the gr_name member to always be a zero-length
string.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
issue reported by Michael Forney:
"If wn becomes 0 after processing a chunk of 4, mbsrtowcs currently
continues on, wrapping wn around to -1, causing the rest of the string
to be processed.
This resulted in buffer overruns if there was only space in ws for wn
wide characters."
the original patch submitted added an additional check for !wn after
the loop; to avoid extra branching, I instead just changed the wn>=4
check to wn>=5 to ensure that at least one slot remains after the
word-at-a-time loop runs. this should not slow down the tail
processing on real-world usage, since an extra slot that can't be
processed in the word-at-a-time loop is needed for the null
termination anyway.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
if a multithreaded program became non-multithreaded (i.e. all other
threads exited) while one thread held an internal lock, the remaining
thread would fail to release the lock. the the program then became
multithreaded again at a later time, any further attempts to obtain
the lock would deadlock permanently.
the underlying cause is that the value of libc.threads_minus_1 at
unlock time might not match the value at lock time. one solution would
be returning a flag to the caller indicating whether the lock was
taken and needs to be unlocked, but there is a simpler solution: using
the lock itself as such a flag.
note that this flag is not needed anyway for correctness; if the lock
is not held, the unlock code is harmless. however, the memory
synchronization properties associated with a_store are costly on some
archs, so it's best to avoid executing the unlock code when it is
unnecessary.
|
|
|
|
|
| |
this is the number of realtime signals available, not the maximum
signal number or total number of signals.
|
|
|
|
| |
they were leaving junk in the upper bits.
|
|
|
|
|
|
|
|
|
| |
this was resulting in crashes in posix_spawn on mips, and would have
affected applications calling clone too. since the prototype for
__clone has it as a variadic function, it may not assume that 16($sp)
is writable for use in making the syscall. instead, it needs to
allocate additional stack space, and then adjust the stack pointer
back in both of the code paths for the parent process/thread.
|
|
|
|
|
|
|
|
| |
CLONE_PARENT is not necessary (CLONE_THREAD provides all the useful
parts of it) and Linux treats CLONE_PARENT as an error in certain
situations, without noticing that it would be a no-op due to
CLONE_THREAD. this error case prevents, for example, use of a
multi-threaded init process and certain usages with containers.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
PAGE_SIZE was hardcoded to 4096, which is historically what most
systems use, but on several archs it is a kernel config parameter,
user space can only know it at execution time from the aux vector.
PAGE_SIZE and PAGESIZE are not defined on archs where page size is
a runtime parameter, applications should use sysconf(_SC_PAGE_SIZE)
to query it. Internally libc code defines PAGE_SIZE to libc.page_size,
which is set to aux[AT_PAGESZ] in __init_libc and early in __dynlink
as well. (Note that libc.page_size can be accessed without GOT, ie.
before relocations are done)
Some fpathconf settings are hardcoded to 4096, these should be actually
queried from the filesystem using statfs.
|
|
|
|
| |
the value of MQ_PRIO_MAX does not fit, so it needs to use OFLOW.
|
|
|
|
|
|
| |
unlike other archs, the mips version of clone was not doing anything
to align the stack pointer. this seems to have been the cause for some
SIGBUS crashes that were observed in posix_spawn.
|
|
|
|
|
|
|
|
| |
the underlying problem was not incorrect sign extension (fixed in the
previous commit to this file by nsz) but that code that treats "long"
as 32-bit was copied blindly from i386 to x86_64.
now lrintl is identical to llrintl on x86_64, as it should be.
|
|
|
|
|
|
|
|
| |
if fopen fails for a reason other than ENOENT, we must assume the
intent is that the path file be used. failure may be due to
misconfiguration or intentional resource-exhaustion attack (against
suid programs), in which case falling back to loading libraries from
an unintended path could be dangerous.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
gcc did not always drop excess precision according to c99 at assignments
before version 4.5 even if -std=c99 was requested which caused badly
broken mathematical functions on i386 when FLT_EVAL_METHOD!=0
but STRICT_ASSIGN was not used consistently and it is worked around for
old compilers with -ffloat-store so it is no longer needed
the new convention is to get the compiler respect c99 semantics and when
excess precision is not harmful use float_t or double_t or to specialize
code using FLT_EVAL_METHOD
|
|
|
|
|
|
|
| |
apparently gnulib requires invalid long double representations
to be handled correctly in printf so we classify them according
to how the fpu treats them: bad inf is nan, bad nan is nan,
bad normal is nan and bad subnormal/zero is minimal normal
|
|
|
|
|
|
|
| |
in atanh exception handling was left to the called log functions,
but the argument to those functions could underflow or overflow.
use double_t and float_t to avoid some useless stores on x86
|
|
|
|
| |
libc.h is only for weak_alias so include it directly where it is used
|
|
|
|
|
|
| |
acosh(x) is invalid for x<1, acoshf tried to be clever using
signed comparisions to handle all x<2 the same way, but the
formula was wrong on large negative values.
|
|
|
|
| |
copy the fix from i386: return -1 instead of exp2l(x)-1 when x <= -65
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
there were two problems:
* omitted underflow on subnormal results: exp2l(-16383.5) was calculated
as sqrt(2)*2^-16384, the last bits of sqrt(2) are zero so the down scaling
does not underflow eventhough the result is in subnormal range
* spurious underflow for subnormal inputs: exp2l(0x1p-16400) was evaluated
as f2xm1(x)+1 and f2xm1 raised underflow (because inexact subnormal result)
the first issue is fixed by raising underflow manually if x is in
(-32768,-16382] and not integer (x-0x1p63+0x1p63 != x)
the second issue is fixed by treating x in (-0x1p64,0x1p64) specially
for these fixes the special case handling was completely rewritten
|
| |
|
|
|
|
| |
only fma used these macros and the explicit union is clearer
|
| |
|
|
|
|
|
|
| |
* use new ldshape union consistently
* add ld128 support to frexpl
* simplify sqrtl comment (ld64 is not just arm)
|
|
|
|
|
| |
remove STRICT_ASSIGN (c99 semantics is assumed) and use the conventional
union to prepare the scaling factor (so libm.h is no longer needed)
|
|
|
|
|
| |
in lgammal don't handle 1 and 2 specially, in fma use the new ldshape
union instead of ld80 one.
|
|
|
|
|
|
|
| |
* use float_t and double_t
* cleanup subnormal handling
* bithacks according to the new convention (ldshape for long double
and explicit unions for float and double)
|
|
|
|
|
|
|
|
|
|
|
|
| |
* don't care about inexact flag
* use double_t and float_t (faster, smaller, more precise on x86)
* exp: underflow when result is zero or subnormal and not -inf
* exp2: underflow when result is zero or subnormal and not exact
* expm1: underflow when result is zero or subnormal
* expl: don't underflow on -inf
* exp2: fix incorrect comment
* expm1: simplify special case handling and overflow properly
* expm1: cleanup final scaling and fix negative left shift ub (twopk)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
ld128 support was added to internal kernel functions (__cosl, __sinl,
__tanl, __rem_pio2l) from freebsd (not tested, but should be a good
start for when ld128 arch arrives)
__rem_pio2l had some code cleanup, the freebsd ld128 code seems to
gather the results of a large reduction with precision loss (fixed
the bug but a todo comment was added for later investigation)
the old copyright was removed from the non-kernel wrapper functions
(cosl, sinl, sincosl, tanl) since these are trivial and the interesting
parts and comments had been already rewritten.
|
|
|
|
|
|
| |
* added ld128 support from freebsd fdlibm (untested)
* using new ldshape union instead of IEEEl2bits
* inexact status flag is not supported
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
method: if there is a large difference between the scale of x and y
then the larger magnitude dominates, otherwise reduce x,y so the
argument of sqrt (x*x+y*y) does not overflow or underflow and calculate
the argument precisely using exact multiplication. If the argument
has less error than 1/sqrt(2) ~ 0.7 ulp, then the result has less error
than 1 ulp in nearest rounding mode.
the original fdlibm method was the same, except it used bit hacks
instead of dekker-veltkamp algorithm, which is problematic for long
double where different representations are supported. (the new hypot
and hypotl code should be smaller and faster on 32bit cpu archs with
fast fpu), the new code behaves differently in non-nearest rounding,
but the error should be still less than 2ulps.
ld80 and ld128 are supported
|
|
|
|
|
|
|
|
|
| |
* results are exact
* modfl follows truncl (raises inexact flag spuriously now)
* modf and modff only had cosmetic cleanup
* remainder is just a wrapper around remquo now
* using iterative shift+subtract for remquo and fmod
* ld80 and ld128 are supported as well
|
|
|
|
|
|
|
|
|
|
| |
* faster, smaller, cleaner implementation than the bit hacks of fdlibm
* use arithmetics like y=(double)(x+0x1p52)-0x1p52, which is an integer
neighbor of x in all rounding modes (0<=x<0x1p52) and only use bithacks
when that's faster and smaller (for float it usually is)
* the code assumes standard excess precision handling for casts
* long double code supports both ld80 and ld128
* nearbyint is not changed (it is a wrapper around rint)
|
|
|
|
|
| |
use -1/(x*x) instead of -1/(x+0) to return -inf, -0+0 is -0 in
downward rounding mode
|
|
|
|
|
|
|
| |
* consistent code style
* explicit union instead of typedef for double and float bit access
* turn FENV_ACCESS ON to make 0/0.0f raise invalid flag
* (untested) ld128 version of ilogbl (used by logbl which has ld128 support)
|
|
|
|
|
|
|
|
| |
new ldshape union, ld128 support is kept, code that used the old
ldshape union was rewritten (IEEEl2bits union of freebsd libm is
not touched yet)
ld80 __fpclassifyl no longer tries to handle invalid representation
|
| |
|
|
|
|
|
| |
switch to the new __block_all_sigs/__restore_sigs internal API to
clean up the code too.
|
|
|
|
|
|
| |
this protects against deadlock from spurious signals (e.g. sent by
another process) arriving after the controlling thread releases the
other threads from the sync operation.
|
|
|
|
|
|
|
| |
the head pointer was not being reset between calls to synccall, so any
use of this interface more than once would build the linked list
incorrectly, keeping the (now invalid) list nodes from the previous
call.
|
| |
|
|
|
|
|
| |
clone will pass the return value of the start function to SYS_exit
anyway; there's no need to call the syscall directly.
|
|
|
|
| |
the wide variant was missed in the previous commit.
|
|
|
|
|
|
|
| |
invalid format strings invoke undefined behavior, so this is not a
conformance issue, but it's nicer for scanf to report the error safely
instead of calling free on a potentially-uninitialized pointer or a
pointer to memory belonging to the caller.
|
| |
|
|
|
|
|
|
|
|
|
| |
rather than allocating a PATH_MAX-sized buffer when the caller does
not provide an output buffer, work first with a PATH_MAX-sized temp
buffer with automatic storage, and either copy it to the caller's
buffer or strdup it on success. this not only avoids massive memory
waste, but also avoids pulling in free (and thus the full malloc
implementation) unnecessarily in static programs.
|