| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
| |
backported fix from freebsd:
http://svnweb.FreeBSD.org/base?view=revision&revision=233973
|
| |
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
1. * in BRE is not special at the beginning of the regex or a
subexpression. this broke ncurses' build scripts.
2. \\( in BRE is a literal \ followed by a literal (, not a literal \
followed by a subexpression opener.
3. the ^ in \\(^ in BRE is a literal ^ only at the beginning of the
entire BRE. POSIX allows treating it as an anchor at the beginning of
a subexpression, but TRE's code for checking if it was at the
beginning of a subexpression was wrong, and fixing it for the sake of
supporting a non-portable usage was too much trouble when just
removing this non-portable behavior was much easier.
this patch also moved lots of the ugly logic for empty atom checking
out of the default/literal case and into new cases for the relevant
characters. this should make parsing faster and make the code smaller.
if nothing else it's a lot more readable/logical.
at some point i'd like to revisit and overhaul lots of this code...
|
|
|
|
|
| |
updated nextafter* to use FORCE_EVAL, it can be used in many other
places in the math code to improve readability.
|
|
|
|
|
|
|
| |
apparently initializing a variable is not "using" it but assigning to
it is "using" it. i don't really like this fix, but it's better than
trying to make a bigger cleanup just before a release, and it should
work fine (tested against nsz's math tests).
|
|\ |
|
| |
| |
| |
| |
| | |
make nexttoward, nexttowardf independent of long double representation.
fix nextafterl: it did not raise underflow flag when the result was 0.
|
|/
|
|
|
|
| |
apparently some packages see stropts.h and want to be able to use
this. the implementation checks that the file descriptor is valid by
using fcntl/F_GETFD so it can report an error if not (as specified).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
these changes are based on the following communication via email:
"I hereby grant that all of the code I have contributed to musl on or
before April 23, 2012 may be licensed under the terms of the following
MIT license:
Copyright (c) 2011-2012 Nicholas J. Kain
Permission is hereby granted, free of charge, to any person obtaining
a copy of this software and associated documentation files (the
"Software"), to deal in the Software without restriction, including
without limitation the rights to use, copy, modify, merge, publish,
distribute, sublicense, and/or sell copies of the Software, and to
permit persons to whom the Software is furnished to do so, subject to
the following conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE."
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this change is necessary or pthread_create will always fail on
security-hardened kernels. i considered first trying to make the stack
executable and simply retrying without execute permissions when the
first try fails, but (1) this would incur a serious performance
penalty on hardened systems, and (2) having the stack be executable is
just a bad idea from a security standpoint.
if there is real-world "GNU C" code that uses nested functions with
threads, and it can't be fixed, we'll have to consider other ways of
solving the problem, but for now this seems like the best fix.
|
|\ |
|
| |
| |
| |
| |
| |
| |
| |
| |
| |
| | |
old: 2*atan2(sqrt(1-x),sqrt(1+x))
new: atan2(fabs(sqrt((1-x)*(1+x))),x)
improvements:
* all edge cases are fixed (sign of zero in downward rounding)
* a bit faster (here a single call is about 131ns vs 162ns)
* a bit more precise (at most 1ulp error on 1M uniform random
samples in [0,1), the old formula gave some 2ulp errors as well)
|
|/ |
|
|
|
|
| |
this could lead to spurious failures of wide printf functions
|
| |
|
|
|
|
|
| |
these actually work, but for now they prohibit actually setting
priority levels and report min/max priority as 0.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
pthread structure has been adjusted to match the glibc/GCC abi for
where the canary is stored on i386 and x86_64. it will need variants
for other archs to provide the added security of the canary's entropy,
but even without that it still works as well as the old "minimal" ssp
support. eventually such changes will be made anyway, since they are
also needed for GCC/C11 thread-local storage support (not yet
implemented).
care is taken not to attempt initializing the thread pointer unless
the program actually uses SSP (by reference to __stack_chk_fail).
|
|
|
|
|
|
|
|
| |
these are POSIX 2008 (previously GNU extension) functions that are
rarely used. apparently they had never been tested before, since the
end-of-string logic was completely missing. mbsnrtowcs is used by
modern versions of bash for its glob implementation, and and this bug
was causing tab completion to hang in an infinite loop.
|
| |
|
| |
|
|
|
|
|
|
|
|
|
| |
this is a nonstandard function so it's not clear what conditions it
should satisfy. my intent is that it be fast and exact for positive
integral exponents when the result fits in the destination type, and
fast and correctly rounded for small negative integral exponents.
otherwise we aim for at most 1ulp error; it seems to differ from pow
by at most 1ulp and it's often 2-5 times faster than pow.
|
| |
|
|
|
|
|
|
| |
this caused misreading of certain floating point values that are exact
multiples of large powers of ten, unpredictable depending on prior
stack contents.
|
| |
|
|
|
|
| |
untested
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
| |
unlike the old one, this one's algorithm does not suffer from
potential stack overflow issues or pathologically bad performance on
certain patterns. instead of backtracking, it uses a matching
algorithm which I have not seen before (unsure whether I invented or
re-invented it) that runs in O(1) space and O(nm) time. it may be
possible to improve the time to O(n), but not without significantly
greater complexity.
|
|
|
|
|
|
|
| |
an invalid bracket expression must be treated as if the opening
bracket were just a literal character. this is to fix a bug whereby
POSIX left the behavior of the "[" shell command undefined due to it
being an invalid bracket expression.
|
|
|
|
|
| |
provide the minimal level of dynamic linker-to-debugger glue needed to
let gdb find loaded libraries and load their symbols.
|
|
|
|
|
|
|
|
| |
the code is written to pre-init the thread pointer in static linked
programs that pull in __stack_chk_fail or dynamic-linked programs that
lookup the symbol. no explicit canary is set; the canary will be
whatever happens to be in the thread structure at the offset gcc
hard-coded. this can be improved later.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
i did some testing trying to switch malloc to use the new internal
lock with priority inheritance, and my malloc contention test got
20-100 times slower. if priority inheritance futexes are this slow,
it's simply too high a price to pay for avoiding priority inversion.
maybe we can consider them somewhere down the road once the kernel
folks get their act together on this (and perferably don't link it to
glibc's inefficient lock API)...
as such, i've switch __lock to use malloc's implementation of
lightweight locks, and updated all the users of the code to use an
array with a waiter count for their locks. this should give optimal
performance in the vast majority of cases, and it's simple.
malloc is still using its own internal copy of the lock code because
it seems to yield measurably better performance with -O3 when it's
inlined (20% or more difference in the contention stress test).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this bug probably would have gone unnoticed since it's only used in
the fallback code for systems where priority-inheritance locking
fails. unfortunately this approach results in one spurious wake
syscall on the final unlock, when there are no waiters remaining. the
alternative (possibly better) would be to use broadcast wakes instead
of reflagging the waiter unconditionally, and let each waiter reflag
itself; this saves one syscall at the expense of invoking the
"thundering herd" effect (worse performance degredation) when there
are many waiters.
ideally we would be able to update all of our locks to use an array of
two ints rather than a single int, and use a separate counter system
like proper mutexes use; then we could avoid all spurious wake calls
without resorting to broadcasts. however, it's not clear to me that
priority inheritance futexes support this usage. the kernel sets the
waiters flag for them (just like we're doing now) and i can't tell if
it's safe to bypass the kernel when unlocking just because we know
(from private data, the waiter count) that there are no waiters. this
is something that could be explored in the future.
|
|
|
|
|
|
| |
we use priority inheritance futexes if possible so that the library
cannot hit internal priority inversion deadlocks in the presence of
realtime priority scheduling (full support to be added later).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
i tried to go with improving the old binary-search-based algorithm,
but between growth in the number of ranges, bad performance, and lack
of confidence in the binary search code's stability under changes in
the table, i decided it was worth the extra 1.8k to have something
clean and maintainable.
also note that, like the alpha and punct tables, there's definitely
room to optimize the nonspacing/wide tables by overlapping subtables.
this is not a high priority, but i've begun looking into how to do it,
and i suspect the table sizes can be roughly halved. if that turns out
to be true, the new, fast, table-based implementation will be roughly
the same size as if i had just extended the old binary search one.
|
|
|
|
|
|
|
| |
also special-case ß (U+00DF) as lowercase even though it does not have
a mapping to uppercase. unicode added an uppercase version of this
character but does not map it, presumably because the uppercase
version is not actually used except for some obscure purpose...
|
| |
|
|
|
|
| |
this happened due to their entries in UnicodeData.txt
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
alpha is defined as unicode property "Alphabetic" plus category Nd
minus ASCII digits minus 2 special-cased Thai punctuation marks
supposedly misclassified by Unicode as letters.
punct is defined as all of unicode except control, alphanumeric, and
space characters.
the tables were generated by a simple tool based on the code posted
previously to the mailing list. in the future, this and other code
used for maintaining locale/iconv/i18n data will be published either
in the main source repository or in a separate locale data generation
repository.
|
|
|
|
|
|
|
|
|
|
| |
note that dlerror is specified to be non-thread-safe, so no locking is
performed on the error flag or message aside from the rwlock already
held by dlopen or dlsym. if 2 invocations of dlsym are generating
errors at the same time, they could clobber each other's results, but
the resulting string, albeit corrupt, will still be null-terminated.
any use of dlerror in such a situation could not be expected to give
meaningful results anyway.
|
|
|
|
|
| |
I actually wrote these a month ago but forgot to integrate them. ugly,
probably-harmful-to-use functions, but some legacy apps want them...
|
|
|
|
| |
also be extra careful to avoid wrapping the circular buffer early
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
| |
care is taken that the setting of errno correctly reflects underflow
condition. scanning exact denormal values does not result in ERANGE,
nor does scanning values (such as the usual string definition of
FLT_MIN) which are actually less than the smallest normal number but
which round to a normal result.
only the decimal case is handled so far; hex float require a separate
fix to come later.
|
|
|
|
|
|
| |
in principle this should just be an optimization, but it happens to
also fix a nasty bug where values like 0.00000000001 were getting
caught by the early zero detection path and wrongly scanned as zero.
|
|
|
|
| |
bug detected by glib test suite
|