about summary refs log tree commit diff
path: root/src/prng/random.c
Commit message (Collapse)AuthorAgeFilesLines
* lift child restrictions after multi-threaded forkRich Felker2020-11-111-0/+2
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | as the outcome of Austin Group tracker issue #62, future editions of POSIX have dropped the requirement that fork be AS-safe. this allows but does not require implementations to synchronize fork with internal locks and give forked children of multithreaded parents a partly or fully unrestricted execution environment where they can continue to use the standard library (per POSIX, they can only portably use AS-safe functions). up until recently, taking this allowance did not seem desirable. however, commit 8ed2bd8bfcb4ea6448afb55a941f4b5b2b0398c0 exposed the extent to which applications and libraries are depending on the ability to use malloc and other non-AS-safe interfaces in MT-forked children, by converting latent very-low-probability catastrophic state corruption into predictable deadlock. dealing with the fallout has been a huge burden for users/distros. while it looks like most of the non-portable usage in applications could be fixed given sufficient effort, at least some of it seems to occur in language runtimes which are exposing the ability to run unrestricted code in the child as part of the contract with the programmer. any attempt at fixing such contracts is not just a technical problem but a social one, and is probably not tractable. this patch extends the fork function to take locks for all libc singletons in the parent, and release or reset those locks in the child, so that when the underlying fork operation takes place, the state protected by these locks is consistent and ready for the child to use. locking is skipped in the case where the parent is single-threaded so as not to interfere with legacy AS-safety property of fork in single-threaded programs. lock order is mostly arbitrary, but the malloc locks (including bump allocator in case it's used) must be taken after the locks on any subsystems that might use malloc, and non-AS-safe locks cannot be taken while the thread list lock is held, imposing a requirement that it be taken last.
* split internal lock API out of libc.h, creating lock.hRich Felker2018-09-121-1/+1
| | | | | | | | | this further reduces the number of source files which need to include libc.h and thereby be potentially exposed to libc global state and internals. this will also facilitate further improvements like adding an inline fast-path, if we want to do so later.
* revise the definition of multiple basic locks in the codeJens Gustedt2018-01-091-1/+1
| | | | In all cases this is just a change from two volatile int to one.
* make all objects used with atomic operations volatileRich Felker2015-03-031-1/+1
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | the memory model we use internally for atomics permits plain loads of values which may be subject to concurrent modification without requiring that a special load function be used. since a compiler is free to make transformations that alter the number of loads or the way in which loads are performed, the compiler is theoretically free to break this usage. the most obvious concern is with atomic cas constructs: something of the form tmp=*p;a_cas(p,tmp,f(tmp)); could be transformed to a_cas(p,*p,f(*p)); where the latter is intended to show multiple loads of *p whose resulting values might fail to be equal; this would break the atomicity of the whole operation. but even more fundamental breakage is possible. with the changes being made now, objects that may be modified by atomics are modeled as volatile, and the atomic operations performed on them by other threads are modeled as asynchronous stores by hardware which happens to be acting on the request of another thread. such modeling of course does not itself address memory synchronization between cores/cpus, but that aspect was already handled. this all seems less than ideal, but it's the best we can do without mandating a C11 compiler and using the C11 model for atomics. in the case of pthread_once_t, the ABI type of the underlying object is not volatile-qualified. so we are assuming that accessing the object through a volatile-qualified lvalue via casts yields volatile access semantics. the language of the C standard is somewhat unclear on this matter, but this is an assumption the linux kernel also makes, and seems to be the correct interpretation of the standard.
* fix initstate to make the state buffer usable in setstateSzabolcs Nagy2014-01-211-12/+2
| | | | | | | | | | | setstate could use the results of previous initstate or setstate calls (they return the old state buffer), but the documentation requires that an initialized state buffer should be possible to use in setstate immediately, which means that initstate should save the generator parameters in it. I also removed the copyright notice since it is present in the copyright file.
* ditch the priority inheritance locks; use malloc's version of lockRich Felker2012-04-241-9/+9
| | | | | | | | | | | | | | | | | | | i did some testing trying to switch malloc to use the new internal lock with priority inheritance, and my malloc contention test got 20-100 times slower. if priority inheritance futexes are this slow, it's simply too high a price to pay for avoiding priority inversion. maybe we can consider them somewhere down the road once the kernel folks get their act together on this (and perferably don't link it to glibc's inefficient lock API)... as such, i've switch __lock to use malloc's implementation of lightweight locks, and updated all the users of the code to use an array with a waiter count for their locks. this should give optimal performance in the vast majority of cases, and it's simple. malloc is still using its own internal copy of the lock code because it seems to yield measurably better performance with -O3 when it's inlined (20% or more difference in the contention stress test).
* locking support for random() prngRich Felker2011-06-291-7/+28
| | | | | | these interfaces are required to be thread-safe even though they are not state-free. the random number sequence is shared across all threads.
* initial commit of prng implementation by Szabolcs NagyRich Felker2011-06-231-4/+107
|
* initial check-in, version 0.5.0 v0.5.0Rich Felker2011-02-121-0/+8