| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
i did some testing trying to switch malloc to use the new internal
lock with priority inheritance, and my malloc contention test got
20-100 times slower. if priority inheritance futexes are this slow,
it's simply too high a price to pay for avoiding priority inversion.
maybe we can consider them somewhere down the road once the kernel
folks get their act together on this (and perferably don't link it to
glibc's inefficient lock API)...
as such, i've switch __lock to use malloc's implementation of
lightweight locks, and updated all the users of the code to use an
array with a waiter count for their locks. this should give optimal
performance in the vast majority of cases, and it's simple.
malloc is still using its own internal copy of the lock code because
it seems to yield measurably better performance with -O3 when it's
inlined (20% or more difference in the contention stress test).
|
|
|
|
|
|
| |
these functions are allowed to be cancellation points, but then we
would have to install cleanup handlers to avoid termination with locks
held.
|
|
|
|
|
|
|
|
| |
with datagram sockets, depending on fprintf not to flush the output
early was very fragile; the new version simply uses a small fixed-size
buffer. it could be updated to dynamic-allocate large buffers if
needed, but i can't envision any admin being happy about finding
64kb-long lines in their syslog...
|
|
|
|
| |
per the standard, SIGPIPE is not generated for SOCK_DGRAM.
|
|
|
|
|
|
| |
it actually appears the hacks to block SIGPIPE are probably not
necessary, and potentially harmful. if i can confirm this, i'll remove
them.
|
|
|