| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
| |
it's not part of the malloc implementation but glue with musl dynamic
linker.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
abstractly, calloc is completely malloc-implementation-independent;
it's malloc followed by memset, or as we do it, a "conditional memset"
that avoids touching fresh zero pages.
previously, calloc was kept separate for the bump allocator, which can
always skip memset, and the version of calloc provided with the full
malloc conditionally skipped the clearing for large direct-mmapped
allocations. the latter is a moderately attractive optimization, and
can be added back if needed. however, further consideration to make it
correct under malloc replacement would be needed.
commit b4b1e10364c8737a632be61582e05a8d3acf5690 documented the
contract for malloc replacement as allowing omission of calloc, and
indeed that worked for dynamic linking, but for static linking it was
possible to get the non-clearing definition from the bump allocator;
if not for that, it would have been a link error trying to pull in
malloc.o.
the conditional-clearing code for the new common calloc is taken from
mal0_clear in oldmalloc, but drops the need to access actual page size
and just uses a fixed value of 4096. this avoids potentially needing
access to global data for the sake of an optimization that at best
marginally helps archs with offensively-large page sizes.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this sets the stage for replacement, and makes it practical to keep
oldmalloc around as a build option for a while if that ends up being
useful.
only the files which are actually part of the implementation are
moved. memalign and posix_memalign are entirely generic. in theory
calloc could be pulled out too, but it's useful to have it tied to the
implementation so as to optimize out unnecessary memset when
implementation details make it possible to know the memory is already
clear.
|
|
|
|
|
| |
this function is no longer used elsewhere, and moving it reduces the
number of source files specific to the malloc implementation.
|
| |
|
| |
|
|
|
|
|
|
| |
this change eliminates the internal __memalign function and makes the
memalign and posix_memalign functions completely independent of the
malloc implementation, written portably in terms of aligned_alloc.
|
|
|
|
|
| |
this is the first step of swapping the name of the actual
implementation to aligned_alloc while preserving history follow.
|
|
|
|
|
|
| |
this was an unfinished draft document present since the initial
check-in, that was never intended to ship in its current form. remove
it as part of reorganizing for replacement of the allocator.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this affects the bump allocator used when static linking in programs
that don't need allocation metadata due to not using realloc, free,
etc.
commit e3bc22f1eff87b8f029a6ab31f1a269d69e4b053 refactored the bump
allocator to share code with __expand_heap, used by malloc, for the
purpose of fixing the case (mainly nommu) where brk doesn't work.
however, the geometric growth behavior of __expand_heap is not
actually well-suited to the bump allocator, and can produce
significant excessive memory usage. in particular, by repeatedly
requesting just over the remaining free space in the current
mmap-allocated area, the total mapped memory will be roughly double
the nominal usage. and since the main user of the no-brk mmap fallback
in the bump allocator is nommu, this excessive usage is not just
virtual address space but physical memory.
in addition, even on systems with brk, having a unified size request
to __expand_heap without knowing whether the brk or mmap backend would
get used made it so the brk could be expanded twice as far as needed.
for example, with malloc(n) and n-1 bytes available before the current
brk, the brk would be expanded by n bytes rounded up to page size,
when expansion by just one page would have sufficed.
the new implementation computes request size separately for the cases
where brk expansion is being attempted vs using mmap, and also
performs individual mmap of large allocations without moving to a new
bump area and throwing away the rest of the old one. this greatly
reduces the need for geometric area size growth and limits the extent
to which free space at the end of one bump area might be unusable for
future allocations.
as a bonus, the resulting code size is somewhat smaller than the
combined old version plus __expand_heap.
|
|
|
|
|
| |
this reflects that it is no longer intended for consumption outside of
the malloc implementation.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this has been a longstanding issue reported many times over the years,
with it becoming increasingly clear that it could be hit in practice.
under concurrent malloc and free from multiple threads, it's possible
to hit usage patterns where unbounded amounts of new memory are
obtained via brk/mmap despite the total nominal usage being small and
bounded.
the underlying cause is that, as a fundamental consequence of keeping
locking as fine-grained as possible, the state where free has unbinned
an already-free chunk to merge it with a newly-freed one, but has not
yet re-binned the combined chunk, is exposed to other threads. this is
bad even with small chunks, and leads to suboptimal use of memory, but
where it really blows up is where the already-freed chunk in question
is the large free region "at the top of the heap". in this situation,
other threads momentarily see a state of having almost no free memory,
and conclude that they need to obtain more.
as far as I can tell there is no fix for this that does not harm
performance. the fix made here forces all split/merge of free chunks
to take place under a single lock, which also takes the place of the
old free_lock, being held at least momentarily at the time of free to
determine whether there are neighboring free chunks that need merging.
as a consequence, the pretrim, alloc_fwd, and alloc_rev operations no
longer make sense and are deleted. simplified merging now takes place
inline in free (__bin_chunk) and realloc.
as commented in the source, holding the split_merge_lock precludes any
chunk transition from in-use to free state. for the most part, it also
precludes change to chunk header sizes. however, __memalign may still
modify the sizes of an in-use chunk to split it into two in-use
chunks. arguably this should require holding the split_merge_lock, but
that would necessitate refactoring to expose it externally, which is a
mess. and it turns out not to be necessary, at least assuming the
existing sloppy memory model malloc has been using, because if free
(__bin_chunk) or realloc sees any unsynchronized change to the size,
it will also see the in-use bit being set, and thereby can't do
anything with the neighboring chunk that changed size.
|
|
|
|
|
|
|
|
|
| |
the design used here relies on the barrier provided by the first lock
operation after the process returns to single-threaded state to
synchronize with actions by the last thread that exited. by storing
the intent to change modes in the same object used to detect whether
locking is needed, it's possible to avoid an extra (possibly costly)
memory load after the lock is taken.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
after all but the last thread exits, the next thread to observe
libc.threads_minus_1==0 and conclude that it can skip locking fails to
synchronize with any changes to memory that were made by the
last-exiting thread. this can produce data races.
on some archs, at least x86, memory synchronization is unlikely to be
a problem; however, with the inline locks in malloc, skipping the lock
also eliminated the compiler barrier, and caused code that needed to
re-check chunk in-use bits after obtaining the lock to reuse a stale
value, possibly from before the process became single-threaded. this
in turn produced corruption of the heap state.
some uses of libc.threads_minus_1 remain, especially for allocation of
new TLS in the dynamic linker; otherwise, it could be removed
entirely. it's made non-volatile to reflect that the remaining
accesses are only made under lock on the thread list.
instead of libc.threads_minus_1, libc.threaded is now used for
skipping locks. the difference is that libc.threaded is permanently
true once an additional thread has been created. this will produce
some performance regression in processes that are mostly
single-threaded but occasionally creating threads. in the future it
may be possible to bring back the full lock-skipping, but more care
needs to be taken to produce a safe design.
|
|
|
|
|
|
|
|
|
| |
this further reduces the number of source files which need to include
libc.h and thereby be potentially exposed to libc global state and
internals.
this will also facilitate further improvements like adding an inline
fast-path, if we want to do so later.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
libc.h was intended to be a header for access to global libc state and
related interfaces, but ended up included all over the place because
it was the way to get the weak_alias macro. most of the inclusions
removed here are places where weak_alias was needed. a few were
recently introduced for hidden. some go all the way back to when
libc.h defined CANCELPT_BEGIN and _END, and all (wrongly implemented)
cancellation points had to include it.
remaining spurious users are mostly callers of the LOCK/UNLOCK macros
and files that use the LFS64 macro to define the awful *64 aliases.
in a few places, new inclusion of libc.h is added because several
internal headers no longer implicitly include libc.h.
declarations for __lockfile and __unlockfile are moved from libc.h to
stdio_impl.h so that the latter does not need libc.h. putting them in
libc.h made no sense at all, since the macros in stdio_impl.h are
needed to use them correctly anyway.
|
| |
|
| |
|
|
|
|
|
|
|
|
| |
the malloc-implementation-private header is the only right place for
this, because, being in the reserved namespace, __memalign is not
interposable and thus not valid to use anywhere else. anything outside
of the malloc implementation must call an appropriate-namespace public
function (aligned_alloc or posix_memalign).
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit 618b18c78e33acfe54a4434e91aa57b8e171df89 removed the previous
detection and hardening since it was incorrect. commit
72141795d4edd17f88da192447395a48444afa10 already handled all that
remained for hardening the static-linked case. in the dynamic-linked
case, have the dynamic linker check whether malloc was replaced and
make that information available.
with these changes, the properties documented in commit
c9f415d7ea2dace5bf77f6518b6afc36bb7a5732 are restored: if calloc is
not provided, it will behave as malloc+memset, and any of the
memalign-family functions not provided will fail with ENOMEM.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this change serves multiple purposes:
1. it ensures that static linking of memalign-family functions will
pull in the system malloc implementation, thereby causing link errors
if an attempt is made to link the system memalign functions with a
replacement malloc (incomplete allocator replacement).
2. it eliminates calls to free that are unpaired with allocations,
which are confusing when setting breakpoints or tracing execution.
as a bonus, making __bin_chunk external may discourage aggressive and
unnecessary inlining of it.
|
|
|
|
|
|
|
|
|
| |
the generated code should be mostly unchanged, except for explicit use
of C_INUSE in place of copying the low bits from existing chunk
headers/footers.
these changes also remove mild UB due to dubious arithmetic on
pointers into imaginary size_t[] arrays.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit c9f415d7ea2dace5bf77f6518b6afc36bb7a5732 included checks to
make calloc fallback to memset if used with a replaced malloc that
didn't also replace calloc, and the memalign family fail if free has
been replaced. however, the checks gave false positives for
replacement whenever malloc or free resolved to a PLT entry in the
main program.
for now, disable the checks so as not to leave libc in a broken state.
this means that the properties documented in the above commit are no
longer satisfied; failure to replace calloc and the memalign family
along with malloc is unsafe if they are ever called.
the calloc checks were correct but useless for static linking. in both
cases (simple or full malloc), calloc and malloc are in a source file
together, so replacement of one but not the other would give linking
errors. the memalign-family check was useful for static linking, but
broken for dynamic as described above, and can be replaced with a
better link-time check.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
replacement is subject to conditions on the replacement functions.
they may only call functions which are async-signal-safe, as specified
either by POSIX or as an implementation-defined extension. if any
allocator functions are replaced, at least malloc, realloc, and free
must be provided. if calloc is not provided, it will behave as
malloc+memset. any of the memalign-family functions not provided will
fail with ENOMEM.
in order to implement the above properties, calloc and __memalign
check that they are using their own malloc or free, respectively.
choice to check malloc or free is based on considerations of
supporting __simple_malloc. in order to make this work, calloc is
split into separate versions for __simple_malloc and full malloc;
commit ba819787ee93ceae94efd274f7849e317c1bff58 already did most of
the split anyway, and completing it saves an extra call frame.
previously, use of -Bsymbolic-functions made dynamic interposition
impossible. now, we are using an explicit dynamic-list, so add
allocator functions to the list. most are not referenced anyway, but
all are added for completeness.
|
|
|
|
|
| |
commit e3bc22f1eff87b8f029a6ab31f1a269d69e4b053 removed all references
to __brk.
|
| |
|
|
|
|
|
| |
Split 'free' into unmap_chunk and bin_chunk, use the latter to introduce
__malloc_donate and use it in reclaim_gaps instead of calling 'free'.
|
|
|
|
|
| |
Fix an instance where realloc code would overallocate by OVERHEAD bytes
amount. Manually arrange for reuse of memcpy-free-return exit sequence.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
Implementation of __malloc0 in malloc.c takes care to preserve zero
pages by overwriting only non-zero data. However, malloc must have
already modified auxiliary heap data just before and beyond the
allocated region, so we know that edge pages need not be preserved.
For allocations smaller than one page, pass them immediately to memset.
Otherwise, use memset to handle partial pages at the head and tail of
the allocation, and scan complete pages in the interior. Optimize the
scanning loop by processing 16 bytes per iteration and handling rest of
page via memset as soon as a non-zero byte is found.
|
|
|
|
| |
In all cases this is just a change from two volatile int to one.
|
| |
|
|
|
|
|
|
|
|
|
| |
mremap seems to always fail on nommu, and on some non-Linux
implementations of the Linux syscall API, it at least fails to
increase allocation size, and may fail to move (i.e. defragment) the
existing mapping when shrinking it too. instead of failing realloc or
leaving an over-sized allocation that may waste a large amount of
memory, fallback to malloc-memcpy-free if mremap fails.
|
|
|
|
|
|
|
|
|
|
| |
float conversion is slow and big on soft-float targets.
The lookup table increases code size a bit on most hard float targets
(and adds 60byte rodata), performance can be a bit slower because of
position independent data access and cpu internal state dependence
(cache, extra branches), but the overall effect should be minimal
(common, small size allocations should be unaffected).
|
|
|
|
|
|
| |
the linux man page specifies malloc_usable_size(0) to return 0 and
this is the semantics other implementations follow (jemalloc).
reported by Alexander Monakov.
|
|
|
|
|
|
|
|
| |
this function is used only as a weak definition for malloc, for static
linking in programs which do not call realloc or free. since it had
external linkage and was thereby exported in libc.so's dynamic symbol
table, --gc-sections was unable to drop it. this was merely an
oversight; there's no reason for it to be external, so make it static.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
during calls to free, any free chunks adjacent to the chunk being
freed are momentarily held in allocated state for the purpose of
merging, possibly leaving little or no available free memory for other
threads to allocate. under this condition, other threads will attempt
to expand the heap rather than waiting to use memory that will soon be
available. the race window where this happens is normally very small,
but became huge when free chooses to use madvise to release unused
physical memory, causing unbounded heap size growth.
this patch drastically shrinks the race window for unwanted heap
expansion by performing madvise with the bin lock held and marking the
bin non-empty in the binmask before making the expensive madvise
syscall. testing by Timo Teräs has shown this approach to be a
suitable mitigation.
more invasive changes to the synchronization between malloc and free
would be needed to completely eliminate the problem. it's not clear
whether such changes would improve or worsen typical-case performance,
or whether this would be a worthwhile direction to take malloc
development.
|
|
|
|
|
|
| |
commit ba819787ee93ceae94efd274f7849e317c1bff58 introduced this
regression. since the __malloc0 weak alias was not properly provided
by __simple_malloc, use of calloc forced the full malloc to be linked.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
previously, calloc's implementation encoded assumptions about the
implementation of malloc, accessing a size_t word just prior to the
allocated memory to determine if it was obtained by mmap to optimize
out the zero-filling. when __simple_malloc is used (static linking a
program with no realloc/free), it doesn't matter if the result of this
check is wrong, since all allocations are zero-initialized anyway. but
the access could be invalid if it crosses a page boundary or if the
pointer is not sufficiently aligned, which can happen for very small
allocations.
this patch fixes the issue by moving the zero-fill logic into malloc.c
with the full malloc, as a new function named __malloc0, which is
provided by a weak alias to __simple_malloc (which always gives
zero-filled memory) when the full malloc is not in use.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this extends the brk/stack collision protection added to full malloc
in commit 276904c2f6bde3a31a24ebfa201482601d18b4f9 to also protect the
__simple_malloc function used in static-linked programs that don't
reference the free function.
it also extends support for using mmap when brk fails, which full
malloc got in commit 5446303328adf4b4e36d9fba21848e6feb55fab4, to
__simple_malloc.
since __simple_malloc may expand the heap by arbitrarily large
increments, the stack collision detection is enhanced to detect
interval overlap rather than just proximity of a single address to the
stack. code size is increased a bit, but this is partly offset by the
sharing of code between the two malloc implementations, which due to
linking semantics, both get linked in a program that needs the full
malloc with realloc/free support.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
the linux/nommu fdpic ELF loader sets up the brk range to overlap
entirely with the main thread's stack (but growing from opposite
ends), so that the resulting failure mode for malloc is not to return
a null pointer but to start returning pointers to memory that overlaps
with the caller's stack. needless to say this extremely dangerous and
makes brk unusable.
since it's non-trivial to detect execution environments that might be
affected by this kernel bug, and since the severity of the bug makes
any sort of detection that might yield false-negatives unsafe, we
instead check the proximity of the brk to the stack pointer each time
the brk is to be expanded. both the main thread's stack (where the
real known risk lies) and the calling thread's stack are checked. an
arbitrary gap distance of 8 MB is imposed, chosen to be larger than
linux default main-thread stack reservation sizes and larger than any
reasonable stack configuration on nommu.
the effeciveness of this patch relies on an assumption that the amount
by which the brk is being grown is smaller than the gap limit, which
is always true for malloc's use of brk. reliance on this assumption is
why the check is being done in malloc-specific code and not in __brk.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this re-check idiom seems to have been copied from the alloc_fwd and
alloc_rev functions, which guess a bin based on non-synchronized
memory access to adjacent chunk headers then need to confirm, after
locking the bin, that the chunk is actually in the bin they locked.
the check being removed, however, was being performed on a chunk
obtained from the already-locked bin. there is no race to account for
here; the check could only fail in the event of corrupt free lists,
and even then it would not catch them but simply continue running.
since the bin_index function is mildly expensive, it seems preferable
to remove the check rather than trying to convert it into a useful
consistency check. casual testing shows a 1-5% reduction in run time.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
the malloc init code provided its own version of pthread_once type
logic, including the exact same bug that was fixed in pthread_once in
commit 0d0c2f40344640a2a6942dda156509593f51db5d.
since this code is called adjacent to expand_heap, which takes a lock,
there is no reason to have pthread_once-type initialization. simply
moving the init code into the interval where expand_heap already holds
its lock on the brk achieves the same result with much less
synchronization logic, and allows the buggy code to be eliminated
rather than just fixed.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
the memory model we use internally for atomics permits plain loads of
values which may be subject to concurrent modification without
requiring that a special load function be used. since a compiler is
free to make transformations that alter the number of loads or the way
in which loads are performed, the compiler is theoretically free to
break this usage. the most obvious concern is with atomic cas
constructs: something of the form tmp=*p;a_cas(p,tmp,f(tmp)); could be
transformed to a_cas(p,*p,f(*p)); where the latter is intended to show
multiple loads of *p whose resulting values might fail to be equal;
this would break the atomicity of the whole operation. but even more
fundamental breakage is possible.
with the changes being made now, objects that may be modified by
atomics are modeled as volatile, and the atomic operations performed
on them by other threads are modeled as asynchronous stores by
hardware which happens to be acting on the request of another thread.
such modeling of course does not itself address memory synchronization
between cores/cpus, but that aspect was already handled. this all
seems less than ideal, but it's the best we can do without mandating a
C11 compiler and using the C11 model for atomics.
in the case of pthread_once_t, the ABI type of the underlying object
is not volatile-qualified. so we are assuming that accessing the
object through a volatile-qualified lvalue via casts yields volatile
access semantics. the language of the C standard is somewhat unclear
on this matter, but this is an assumption the linux kernel also makes,
and seems to be the correct interpretation of the standard.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this function is needed for some important practical applications of
ABI compatibility, and may be useful for supporting some non-portable
software at the source level too.
I was hesitant to add a function which imposes any constraints on
malloc internals; however, it turns out that any malloc implementation
which has realloc must already have an efficient way to determine the
size of existing allocations, so no additional constraint is imposed.
for now, some internal malloc definitions are duplicated in the new
source file. if/when malloc is refactored to put them in a shared
internal header file, these could be removed.
since malloc_usable_size is conventionally declared in malloc.h, the
empty stub version of this file was no longer suitable. it's updated
to provide the standard allocator functions, nonstandard ones (even if
stdlib.h would not expose them based on the feature test macros in
effect), and any malloc-extension functions provided (currently, only
malloc_usable_size).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this issue mainly affects PIE binaries and execution of programs via
direct invocation of the dynamic linker binary: depending on kernel
behavior, in these cases the initial brk may be placed at at location
where it cannot be extended, due to conflicting adjacent maps.
when brk fails, mmap is used instead to expand the heap. in order to
avoid expensive bookkeeping for managing fragmentation by merging
these new heap regions, the minimum size for new heap regions
increases exponentially in the number of regions. this limits the
number of regions, and thereby the number of fixed fragmentation
points, to a quantity which is logarithmic with respect to the size of
virtual address space and thus negligible. the exponential growth is
tuned so as to avoid expanding the heap by more than approximately 50%
of its current total size.
|
| |
|
|
|
|
|
|
|
|
|
|
| |
there is no reason to check the return value for setting errno, since
brk never returns errors, only the new value of the brk (which may be
the same as the old, or otherwise differ from the requested brk, on
failure).
it may be beneficial to eventually just eliminate this file and make
the syscalls inline in malloc.c.
|
|
|
|
|
| |
I wrongly assumed the brk syscall would set errno, but on failure it
returns the old value of the brk rather than an error code.
|