| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
a request for this behavior has been open for a long time. the
motivation is that application code, particularly under some language
runtimes designed around very-low-footprint coroutine type constructs,
may be operating with extremely small stack sizes unsuitable for
receiving signals, using a separate signal stack for any signals it
might handle.
progress on this was blocked at one point trying to determine whether
the implementation is actually entitled to clobber the alt stack, but
the phrasing "available to the implementation" in the POSIX spec for
sigaltstack seems to make it clear that the application cannot rely on
the contents of this memory to be preserved in the absence of signal
delivery (on the abstract machine, excluding implementation-internal
signals) and that we can therefore use it for delivery of signals that
"don't exist" on the abstract machine.
no change is made for SIGTIMER since it is always blocked when used,
and accepted via sigwaitinfo rather than execution of the signal
handler.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this is a workaround to avoid a crashing regression on qemu-user when
dynamic TLS is installed at dlopen time. the sigaction syscall should
not be able to fail, but it does fail for implementation-internal
signals under qemu user-level emulation if the host libc qemu is
running under reserves the same signals for implementation-internal
use, since qemu makes no provision to redirect/emulate them. after
sigaction fails, the subsequent tkill would terminate the process
abnormally as the default action.
no provision to account for membarrier failing is made in the dynamic
linker code that installs new TLS. at the formal level, the missing
barrier in this case is incorrect, and perhaps we should fail the
dlopen operation, but in practice all the archs we support (and
probably all real-world archs except alpha, which isn't yet supported)
should give the right behavior with no barrier at all as a consequence
of consume-order properties.
in the long term, this workaround should be supplemented or replaced
by something better -- a different fallback approach to ensuring
memory consistency, or dynamic allocation of implementation-internal
signals. the latter is appealing in that it would allow cancellation
to work under qemu-user too, and would even allow many levels of
nested emulation.
|
|
the motivation for this change is twofold. first, it gets the fallback
logic out of the dynamic linker, improving code readability and
organization. second, it provides application code that wants to use
the membarrier syscall, which depends on preregistration of intent
before the process becomes multithreaded unless unbounded latency is
acceptable, with a symbol that, when linked, ensures that this
registration happens.
|