| Commit message (Collapse) | Author | Age | Files | Lines |
... | |
|
|
|
|
|
|
| |
despite sh not generally using register-pair alignment for 64-bit
syscall arguments, there are arch-specific versions of the syscall
entry points for pread and pwrite which include a dummy argument for
alignment before the 64-bit offset argument.
|
| |
|
|
|
|
| |
based on patch submitted by Jaydeep Patil, with minor changes.
|
|
|
|
|
| |
patch by Mahesh Bodapati and Jaydeep Patil of Imagination
Technologies.
|
|
|
|
|
|
|
|
|
| |
this change is made in preparation for adding the mips64 port, which
needs a 64-bit (and mips64-specific) form of the R_INFO macro, but
it's a better abstraction anyway.
based on part of the mips64 port patch by Mahesh Bodapati and Jaydeep
Patil of Imagination Technologies.
|
|
|
|
|
| |
No current ports do this, but it will be useful for porting to 64-bit ll/sc
architectures, such as mips64 and powerpc64.
|
|
|
|
|
|
|
|
|
| |
as specified, the int argument providing the character to write is
converted to type unsigned char. for the actual write to buffer,
conversion happened implicitly via the assignment operator; however,
the logic to check whether the argument was a newline used the
original int value. thus usage such as putchar('\n'+0x100) failed to
produce a flush.
|
|
|
|
|
|
|
| |
GDB is looking for a pointer to the ldso debug info in the data of the
..rld_map section.
Signed-off-by: Felix Fietkau <nbd@openwrt.org>
|
|
|
|
|
|
|
|
| |
only use SYS_socketcall if SYSCALL_USE_SOCKETCALL is defined
internally, otherwise use direct syscalls.
this commit does not change the current behaviour, it is
preparation for adding direct syscall numbers for i386.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
rather than having each arch provide its own atomic.h, there is a new
shared atomic.h in src/internal which pulls arch-specific definitions
from arc/$(ARCH)/atomic_arch.h. the latter can be extremely minimal,
defining only a_cas or new ll/sc type primitives which the shared
atomic.h will use to construct everything else.
this commit avoids making heavy changes to the individual archs'
atomic implementations. definitions which are identical or
near-identical to what the new shared atomic.h would produce have been
removed, but otherwise the changes made are just hooking up the
arch-specific files to the new infrastructure. major changes to take
advantage of the new system will come in subsequent commits.
|
|
|
|
|
| |
otherwise C declarations are included into preprocessed (.S) asm
source files, producing errors from the assembler.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
commit ad1cd43a86645ba2d4f7c8747240452a349d6bc1 eliminated
preprocessor-level omission of references to the init/fini array
symbols from object files going into libc.so. the references are weak,
and the intent was that the linker would resolve them to zero in
libc.so, but instead it leaves undefined references that could be
satisfied at runtime. normally these references would be harmless,
since the code using them does not even get executed, but some older
binutils versions produce a linking error: when linking a program
against libc.so, ld first tries to use the hidden init/fini array
symbols produced by the linker script to satisfy the references in
libc.so, then produces an error because the definitions are hidden.
ideally ld would have already provided definitions of these symbols
when linking libc.so, but the linker script for -shared omits them.
to avoid this situation, the dynamic linker now provides its own dummy
definitions of the init/fini array symbols for libc.so. since they are
hidden, everything binds at ld time and no references remain in the
dynamic symbol table. with modern binutils and --gc-sections, both
the dummy empty array objects and the code referencing them get
dropped at link time, anyway.
the _init and _fini symbols are also switched back to using weak
definitions rather than weak references since the latter behave
somewhat problematically in general, and the weak definition approach
was known to work well.
|
|
|
|
| |
also fix visibility of the glue function used.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this both allows removal of some of the main remaining uses of the
SHARED macro and clears one obstacle to static-linked dlopen support,
which may be added at some point in the future.
specialized single-TLS-module versions of __copy_tls and __reset_tls
are removed and replaced with code adapted from their dynamic-linked
versions, capable of operating on a whole chain of TLS modules, and
use of the dynamic linker's DSO chain (which contains large struct dso
objects) by these functions is replaced with a new chain of struct
tls_module objects containing only the information needed for
implementing TLS. this may also yield some performance benefit
initializing TLS for a new thread when a large number of modules
without TLS have been loaded, since since there is no need to walk
structures for modules without TLS.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this is the first and simplest stage of removal of the SHARED macro,
which will eventually allow libc.a and libc.so to be produced from the
same object files.
the original motivation for these #ifdefs which are now being removed
was to allow building a static-only libc using a compiler that does
not support visibility. however, SHARED was the wrong condition to
test for this anyway; various assembly-language sources refer to
hidden symbols and declare them with the .hidden directive, making it
wrong to define the referenced symbols as non-hidden. if there is a
need in the future to build libc using compilers that lack visibility,
support could be moved to the build system or perhaps the __PIC__
macro could be checked instead of SHARED.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
on linux/nommu, non-writable private mappings of files may actually
use memory shared with other processes or the fs cache. the old nommu
loader code (used when mmap with MAP_FIXED fails) simply wrote over
top of the original file mapping, possibly clobbering this shared
memory. no such breakage was observed in practice, but it should have
been possible.
the new code starts by mapping anonymous writable memory on archs that
might support nommu, then maps load segments over top of it, falling
back to read if MAP_FIXED fails. we use an anonymous map rather than a
writable file map to avoid reading more data from disk than needed.
since pages cannot be loaded lazily on fault, in case of large
data/bss, mapping the full file may read a lot of data that will
subsequently be thrown away when processing additional LOAD segments.
as a result, we cannot skip the first LOAD segment when operating in
this mode.
these changes affect only non-FDPIC nommu support.
|
|
|
|
|
|
|
|
| |
these files are all accepted as legacy arm syntax when producing arm
code, but legacy syntax cannot be used for producing thumb2 with
access to the full ISA. even after switching to UAL, some asm source
files contain instructions which are not valid in thumb mode, so these
will need to be addressed separately.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
the idea of the three-instruction sequence being removed was to be
able to return to thumb code when used on armv4t+ from a thumb caller,
but also to be able to run on armv4 without the bx instruction
available (in which case the low bit of lr would always be 0).
however, without compiler support for generating such a sequence from
C code, which does not exist and which there is unlikely to be
interest in implementing, there is little point in having it in the
asm, and it would likely be easier to add pre-armv4t support via
enhanced linker handling of R_ARM_V4BX than at the compiler level.
removing this code simplifies adding support for building libc in
thumb2-only form (for cortex-m).
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
some newer binutils versions print scary warnings about protected data
because most gcc versions fail to produce the right address
references/relocations for such data that might be subject to copy
relocations. originally vis.h explicitly assigned default visibility
to all public data symbols to avoid this issue, but commit
b8dda24fe1caa901a99580f7a52defb95aedb67c removed this treatment for
stdin/out/err to work around a gcc 3.x bug, and since they don't
actually need it (because taking their addresses is not valid C).
instead, a check for the gcc 3.x bug is added to the configure check
for vis.h preinclude support; this feature will simply be disabled
when using a buggy version of gcc.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
the restorer function pointer provided in the kernel sigaction
structure is interpreted by the kernel as a raw code address, not a
function descriptor.
this commit moves the declarations of the __restore and __restore_rt
symbols to ksigaction.h so that arch versions of the file can override
them, and introduces a version for sh which declares them as objects
rather than functions.
an alternate solution would have been defining SA_RESTORER to 0 so
that the functions are not used, but this both requires executable
stack (since the sh kernel does not have a vdso page with permanent
restorer functions) and crashes on qemu user-level emulation.
|
|
|
|
|
|
| |
previously, the normal ELF library loading code was used even for
fdpic, so only the kernel-loaded dynamic linker and main app could
benefit from separate placement of segments and shared text.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
at this point not all functionality is complete. the dynamic linker
itself, and main app if it is also loaded by the kernel, take
advantage of fdpic and do not need constant displacement between
segments, but additional libraries loaded by the dynamic linker follow
normal ELF semantics for mapping still. this fully works, but does not
admit shared text on nommu.
in terms of actual functional correctness, dlsym's results are
presently incorrect for function symbols, RTLD_NEXT fails to identify
the caller correctly, and dladdr fails almost entirely.
with the dynamic linker entry point working, support for static pie is
automatically included, but linking the main application as ET_DYN
(pie) probably does not make sense for fdpic anyway. ET_EXEC is
equally relocatable but more efficient at representing relocations.
|
| |
|
|
|
|
|
| |
this file is intended to be included by crt_arch.h on fdpic-based
targets and needs to be called from the entry point asm.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
the TLS ABI spec for mips, powerpc, and some other (presently
unsupported) RISC archs has the return value of __tls_get_addr offset
by +0x8000 and the result of DTPOFF relocations offset by -0x8000. I
had previously assumed this part of the ABI was actually just an
implementation detail, since the adjustments cancel out. however, when
the local dynamic model is used for accessing TLS that's known to be
in the same DSO, either of the following may happen:
1. the -0x8000 offset may already be applied to the argument structure
passed to __tls_get_addr at ld time, without any opportunity for
runtime relocations.
2. __tls_get_addr may be used with a zero offset argument to obtain a
base address for the module's TLS, to which the caller then applies
immediate offsets for individual objects accessed using the local
dynamic model. since the immediate offsets have the -0x8000 adjustment
applied to them, the base address they use needs to include the
+0x8000 offset.
it would be possible, but more complex, to store the pointers in the
dtv[] array with the +0x8000 offset pre-applied, to avoid the runtime
cost of adding 0x8000 on each call to __tls_get_addr. this change
could be made later if measurements show that it would help.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
nominally the low bits of the trap number on sh are the number of
syscall arguments, but they have never been used by the kernel, and
some code making syscalls does not even know the number of arguments
and needs to pass an arbitrary high number anyway.
sh3/sh4 traditionally used the trap range 16-31 for syscalls, but part
of this range overlapped with hardware exceptions/interrupts on sh2
hardware, so an incompatible range 32-47 was chosen for sh2.
using trap number 31 everywhere, since it's in the existing sh3/sh4
range and does not conflict with sh2 hardware, is a proposed
unification of the kernel syscall convention that will allow binaries
to be shared between sh2 and sh3/sh4. if this is not accepted into the
kernel, we can refit the sh2 target with runtime selection mechanisms
for the trap number, but doing so would be invasive and would entail
non-trivial overhead.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
functions which open in-memory FILE stream variants all shared a tail
with __fdopen, adding the FILE structure to stdio's open file list.
replacing this common tail with a function call reduces code size and
duplication of logic. the list is also partially encapsulated now.
function signatures were chosen to facilitate tail call optimization
and reduce the need for additional accessor functions.
with these changes, static linked programs that do not use stdio no
longer have an open file list at all.
|
|
|
|
|
|
|
|
| |
this patch activates the new byte-based C locale (high bytes treated
as abstract code unit "characters" rather than decoded as multibyte
characters) by making the value of MB_CUR_MAX depend on the active
locale. for the C locale, the LC_CTYPE category pointer is null,
yielding a value of 1. all other locales yield a value of 4.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this patch adjusts libc components which use the multibyte functions
internally, and which depend on them operating in a particular
encoding, to make the appropriate locale changes before calling them
and restore the calling thread's locale afterwards. activating the
byte-based C locale without these changes would cause regressions in
stdio and iconv.
in the case of iconv, the current implementation was simply using the
multibyte functions as UTF-8 conversions. setting a multibyte UTF-8
locale for the duration of the iconv operation allows the code to
continue working.
in the case of stdio, POSIX requires that FILE streams have an
encoding rule bound at the time of setting wide orientation. as long
as all locales, including the C locale, used the same encoding,
treating high bytes as UTF-8, there was no need to store an encoding
rule as part of the stream's state.
a new locale field in the FILE structure points to the locale that
should be made active during fgetwc/fputwc/ungetwc on the stream. it
cannot point to the locale active at the time the stream becomes
oriented, because this locale could be mutable (the global locale) or
could be destroyed (locale_t objects produced by newlocale) before the
stream is closed. instead, a pointer to the static C or C.UTF-8 locale
object added in commit commit aeeac9ca5490d7d90fe061ab72da446c01ddf746
is used. this is valid since categories other than LC_CTYPE will not
affect these functions.
|
| |
|
|
|
|
|
|
|
|
| |
unless/until the byte-based C locale is implemented, defining
MB_CUR_MAX to 1 in the C locale is wrong. no internal code currently
uses the MB_CUR_MAX macro, but having it defined inconsistently is
error-prone. applications get the value from stdlib.h and were
unaffected.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
previously, LC_MESSAGES was treated specially as the only category
which could be set to a locale name without a definition file, in
order to facilitate gettext message translations when no libc locale
was available. LC_NUMERIC was completely un-settable, and LC_CTYPE
stored a flag intended to be used for a possible future byte-based C
locale, instead of storing a __locale_map pointer like the other
categories use.
this patch changes all categories to be represented by pointers to
__locale_map structures, and allows locale names without definition
files to be treated as valid locales with trivial definition when used
in any category. outwardly visible functional changes should be minor,
limited mainly to the strings read back from setlocale and the way
gettext handles translations in categories other than LC_MESSAGES.
various internal refactoring has also been performed, and improvements
in const correctness have been made.
|
|
|
|
|
|
|
|
|
| |
this move eliminates a duplicate "by-hand" symbol lookup loop from the
stage-1 code and replaces it with a call to find_sym, which can be
used once we're in stage 2. it reduces the size of the stage 1 code,
which is helpful because stage 1 will become the crt start file for
static-PIE executables, and it will allow stage 3 to access stage 2's
automatic storage, which will be important in an upcoming commit.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
the code being removed used atomics to track whether any threads might
be using a locale other than the current global locale, and whether
any threads might have abstract 8-bit (non-UTF-8) LC_CTYPE active, a
feature which was never committed (still pending). the motivations
were to support early execution prior to setup of the thread pointer,
to partially support systems (ancient kernels) where thread pointer
setup is not possible, and to avoid high performance cost on archs
where accessing the thread pointer may be very slow.
since commit 19a1fe670acb3ab9ead0fe31859ca7d4fe40dd54, the thread
pointer is always available, so these hacks are no longer needed.
removing them greatly simplifies the affected code.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
i386, x86_64, x32, and powerpc all use TLS for stack protector canary
values in the default stack protector ABI, but the location only
matched the ABI on i386 and x86_64. on x32, the expected location for
the canary contained the tid, thus producing spurious mismatches
(resulting in process termination) upon fork. on powerpc, the expected
location contained the stdio_locks list head, so returning from a
function after calling flockfile produced spurious mismatches. in both
cases, the random canary was not present, and a predictable value was
used instead, making the stack protector hardening much less effective
than it should be.
in the current fix, the thread structure has been expanded to have
canary fields at all three possible locations, and archs that use a
non-default location must define a macro in pthread_arch.h to choose
which location is used. for most archs (which lack TLS canary ABI) the
choice does not matter.
|
|
|
|
|
|
|
|
|
|
|
|
| |
the motivation for this change is that the extra declaration (with or
without visibility) using "struct _IO_FILE" instead of "FILE" seems to
trigger a bug in gcc 3.x where it considers the types mismatched.
however, this change also results in slightly better code and it is
valid because (1) these three objects are constant, and (2) applying
the & operator to any of them is invalid C, since they are not even
specified to be objects. thus it does not matter if the application
and libc see different addresses for them, as long as the (initial,
unchanging) value is seen the same by both.
|
|
|
|
|
| |
these are used as hidden by asm files (and such use is the whole
reason they exist), but their actual definitions were not hidden.
|
|
|
|
|
| |
commit f9cccfc16e58b39ee381fbdfb8688db3bb8e3555 left behind the part
in libc.c; remove it too.
|
|
|
|
|
|
|
|
|
| |
these were hacks to work around toolchains that could not properly
optimize PIC accesses based on visibility and would generate GOT
lookups even for hidden data, which broke the old dynamic linker.
since commit f3ddd173806fd5c60b3f034528ca24542aecc5b9 it no longer
matters; the dynamic linker does not assume accessibility of this data
until stage 3.
|
|
|
|
|
|
|
|
|
|
|
|
| |
this is implemented via the build system and does not affect source
files. the idea is to use protected or hidden visibility to prevent
the compiler from pessimizing function calls within a shared (or
position-independent static) libc in the form of overhead setting up
for a call through the PLT. the ld-time symbol binding via the
-Bsymbolic-functions option already optimized out the PLT itself, but
not the code in the caller needed to support a call through the PLT.
on some archs this overhead can be substantial; on others it's
trivial.
|
|
|
|
|
|
|
|
|
| |
this fixes truncation of error messages containing long pathnames or
symbol names.
the dlerror state was previously required by POSIX to be global. the
resolution of bug 97 relaxed the requirements to allow thread-safe
implementations of dlerror with thread-local state and message buffer.
|
| |
|
| |
|
|
|
|
|
| |
otherwise the call instruction in the inline syscall asm results in
textrels without ld-time binding.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
since 1.1.0, musl has nominally required a thread pointer to be setup.
most of the remaining code that was checking for its availability was
doing so for the sake of being usable by the dynamic linker. as of
commit 71f099cb7db821c51d8f39dfac622c61e54d794c, this is no longer
necessary; the thread pointer is now valid before any libc code
(outside of dynamic linker bootstrap functions) runs.
this commit essentially concludes "phase 3" of the "transition path
for removing lazy init of thread pointer" project that began during
the 1.1.0 release cycle.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this overhaul further reduces the amount of arch-specific code needed
by the dynamic linker and removes a number of assumptions, including:
- that symbolic function references inside libc are bound at link time
via the linker option -Bsymbolic-functions.
- that libc functions used by the dynamic linker do not require
access to data symbols.
- that static/internal function calls and data accesses can be made
without performing any relocations, or that arch-specific startup
code handled any such relocations needed.
removing these assumptions paves the way for allowing libc.so itself
to be built with stack protector (among other things), and is achieved
by a three-stage bootstrap process:
1. relative relocations are processed with a flat function.
2. symbolic relocations are processed with no external calls/data.
3. main program and dependency libs are processed with a
fully-functional libc/ldso.
reduction in arch-specific code is achived through the following:
- crt_arch.h, used for generating crt1.o, now provides the entry point
for the dynamic linker too.
- asm is no longer responsible for skipping the beginning of argv[]
when ldso is invoked as a command.
- the functionality previously provided by __reloc_self for heavily
GOT-dependent RISC archs is now the arch-agnostic stage-1.
- arch-specific relocation type codes are mapped directly as macros
rather than via an inline translation function/switch statement.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this global lock allows certain unlock-type primitives to exclude
mmap/munmap operations which could change the identity of virtual
addresses while references to them still exist.
the original design mistakenly assumed mmap/munmap would conversely
need to exclude the same operations which exclude mmap/munmap, so the
vmlock was implemented as a sort of 'symmetric recursive rwlock'. this
turned out to be unnecessary.
commit 25d12fc0fc51f1fae0f85b4649a6463eb805aa8f already shortened the
interval during which mmap/munmap held their side of the lock, but
left the inappropriate lock design and some inefficiency.
the new design uses a separate function, __vm_wait, which does not
hold any lock itself and only waits for lock users which were already
present when it was called to release the lock. this is sufficient
because of the way operations that need to be excluded are sequenced:
the "unlock-type" operations using the vmlock need only block
mmap/munmap operations that are precipitated by (and thus sequenced
after) the atomic-unlock they perform while holding the vmlock.
this allows for a spectacular lack of synchronization in the __vm_wait
function itself.
|
|
|
|
|
|
|
|
|
|
| |
This adds complete aarch64 target support including bigendian subarch.
Some of the long double math functions are known to be broken otherwise
interfaces should be fully functional, but at this point consider this
port experimental.
Initial work on this port was done by Sireesh Tripurari and Kevin Bortis.
|