| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this is something of a tradeoff, as now set*id() functions, rather
than pthread_create, are what pull in the code overhead for dealing
with linux's refusal to implement proper POSIX thread-vs-process
semantics. my motivations are:
1. it's cleaner this way, especially cleaner to optimize out the
rsyscall locking overhead from pthread_create when it's not needed.
2. it's expected that only a tiny number of core system programs will
ever use set*id() functions, whereas many programs may want to use
threads, and making thread overhead tiny is an incentive for "light"
programs to try threads.
|
|
|
|
|
|
|
| |
with these small changes, libc functions which need to call functions
which are cancellation points, but which themselves must not be
cancellation points, can use the CANCELPT_INHIBIT and CANCELPT_RESUME
macros to temporarily inhibit all cancellation.
|
| |
|
| |
|
|
|
|
|
|
|
| |
we want to keep atomically updated fields (locks and thread count) and
really anything writable far away from frequently-needed function
pointers. stuff some rarely-needed function pointers in between to
pad, hopefully up to a cache line boundary.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
- there is no longer any risk of spoofing cancellation requests, since
the cancel flag is set in pthread_cancel rather than in the signal
handler.
- cancellation signal is no longer unblocked when running the
cancellation handlers. instead, pthread_create will cause any new
threads created from a cancellation handler to unblock their own
cancellation signal.
- various tweaks in preparation for POSIX timer support.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
this commit addresses two issues:
1. a race condition, whereby a cancellation request occurring after a
syscall returned from kernelspace but before the subsequent
CANCELPT_END would cause cancellable resource-allocating syscalls
(like open) to leak resources.
2. signal handlers invoked while the thread was blocked at a
cancellation point behaved as if asynchronous cancellation mode wer in
effect, resulting in potentially dangerous state corruption if a
cancellation request occurs.
the glibc/nptl implementation of threads shares both of these issues.
with this commit, both are fixed. however, cancellation points
encountered in a signal handler will not be acted upon if the signal
was received while the thread was already at a cancellation point.
they will of course be acted upon after the signal handler returns, so
in real-world usage where signal handlers quickly return, it should
not be a problem. it's possible to solve this problem too by having
sigaction() wrap all signal handlers with a function that uses a
pthread_cleanup handler to catch cancellation, patch up the saved
context, and return into the cancellable function that will catch and
act upon the cancellation. however that would be a lot of complexity
for minimal if any benefit...
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
prefer using visibility=hidden for __libc internal data, rather than
an accessor function, if the compiler has visibility.
optimize with -O3 for PIC targets (shared library). without heavy
inlining, reloading the GOT register in small functions kills
performance. 20-30% size increase for a single libc.so is not a big
deal, compared to comparaible size increase in every static binaries.
use -Bsymbolic-functions, not -Bsymbolic. global variables are subject
to COPY relocations, and thus binding their addresses in the library
at link time will cause library functions to read the wrong (original)
copies instead of the copies made in the main program's bss section.
add entry point, _start, for dynamic linker.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
prior to this change, a large portion of libc was unusable prior to
relocation by the dynamic linker, due to dependence on the global data
in the __libc structure and the need to obtain its address through the
GOT. with this patch, the accessor function __libc_loc is now able to
obtain the address of __libc via PC-relative addressing without using
the GOT. this means the majority of libc functionality is now
accessible right away.
naturally, the above statements all depend on having an architecture
where PC-relative addressing and jumps/calls are feasible, and a
compiler that generates the appropriate code.
|
|
|
|
|
|
|
|
|
| |
note that this presently does not handle consistency of the libc's own
global state during forking. as per POSIX 2008, if the parent process
was threaded, the child process may only call async-signal-safe
functions until one of the exec-family functions is called, so the
current behavior is believed to be conformant even if non-ideal. it
may be improved at some later time.
|
|
|