| Commit message (Collapse) | Author | Age | Files | Lines |
| |
|
|
|
|
|
|
| |
original FreeSec code accessed keybuf as uint32* and uint8* as well
(incorrectly), this got fixed with an union, but then it seems the
uint32* access is no longer needed so the code can be simplified
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
it was determined in discussion that these kind of limits are not
sufficient to protect single-threaded servers against denial of
service attacks from maliciously large round counts. the time scales
simply vary too much; many users will want login passwords with rounds
counts on a scale that gives decisecond latency, while highly loaded
webservers will need millisecond latency or shorter.
still some limit is left in place; the idea is not to protect against
attacks, but to avoid the runtime of a single call to crypt being, for
all practical purposes, infinite, so that configuration errors can be
caught and fixed without bringing down whole systems. these limits are
very high, on the order of minute-long runtimes for modest systems.
|
|
previously, it was pretty much random which one of these trees a given
function appeared in. they have now been organized into:
src/linux: non-POSIX linux syscalls (possibly shard with other nixen)
src/legacy: various obsolete/legacy functions, mostly wrappers
src/misc: still mostly uncategorized; some misc POSIX, some nonstd
src/crypt: crypt hash functions
further cleanup will be done later.
|