| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
| |
glibc exposes them from ucontext.h.
since that header includes signal.h, it is safe to put them
into bits/signal.h, if _GNU_SOURCE is defined.
|
|
|
|
| |
these are also needed by qemu.
|
|
|
|
| |
both kernel and glibc define it only on x86(_64).
|
|
|
|
|
| |
this is needed for qemu, and since it differs for each arch
it can't be circumvented easily by using a macro in CFLAGS.
|
| |
|
|
|
|
|
| |
if these are to be supported, they belong in the main stat.h, not
repeated for each arch.
|
| |
|
|
|
|
|
|
|
|
| |
these structures are purely for use by trace/debug tools and tools
working with core files. the definition of fpregset_t, which was
previously here, has been removed because it was wrong; fpregset_t
should be the type used in mcontext_t, not the type used in
ptrace/core stuff.
|
| |
|
|
|
|
|
|
| |
aside from microblaze, these should be roughly correct for all archs
now. some misc junk macros and typedefs are missing, which should
probably be added for max compatibility with trace/debug tools.
|
|
|
|
|
|
|
|
| |
it should now really match the kernel. some of the removed padding
corresponded to the difference between user and kernel sigset_t. the
space at the end was redundant with the uc_mcontext member and seems
to have been added as a result of misunderstanding glibc's definition
versus the kernel's.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
with these changes, the members/types of mcontext_t and related stuff
should closely match the glibc definitions. unlike glibc, however, the
definitions here avoid using typedefs as much as possible and work
directly with the underlying types, to minimize namespace pollution
from signal.h in the default (_BSD_SOURCE) profile.
this is a first step in improving compatibility with applications
which poke at context/register information -- mainly debuggers, trace
utilities, etc. additional definitions in ucontext.h and other headers
may be needed later.
if feature test macros are used to request a conforming namespace,
mcontext_t is replaced with an opaque structure of the equivalent size
and alignment; conforming programs cannot examine its contents anyway.
|
| |
|
| |
|
|
|
|
| |
these fields were wrongly copied from the kernel's ppc64 struct def
|
| |
|
| |
|
| |
|
|
|
|
|
|
|
|
| |
unlike the previous definition, NSIG/_NSIG is supposed to be one more
than the highest signal number. adding this will allow simplifying
libc-internal code that makes signal-related syscalls, which can be
done as a later step. some apps might use it too; while this usage is
questionable, it's at least not insane.
|
|
|
|
|
|
|
|
|
|
| |
also handle the non-GNUC case where alignment attribute is not available
by simply omitting it. this will not cause problems except for
inclusion of mcontex_t/ucontext_t in application-defined structures,
since the natural alignment of the uc_mcontext member relative to the
start of ucontext_t is already correct. and shame on whoever designed
this for making it impossible to satisfy the ABI requirements without
GNUC extensions.
|
| |
|
| |
|
|
|
|
|
|
| |
apparently some other archs have sys/io.h and should not break just
because they don't have the x86 port io functions. provide a blank
bits/io.h everywhere for now.
|
|
|
|
|
|
|
| |
based on proposal by Isaac Dunham. nonexistance of bits/io.h will
cause inclusion of sys/io.h to produce an error on archs that are not
supposed to have it. this is probably the desired behavior, but the
error message may be a bit unusual.
|
| |
|
|
|
|
| |
based on code sent to the mailing list by nsz, with minor changes.
|
|
|
|
|
|
| |
put some macros that do not differ between architectures in the
main header and remove from bits.
restructure mips header so it has the same structure as the others.
|
| |
|
|
|
|
|
|
|
|
| |
incomplete but at least partly working. requires all files to be
compiled in the new "secure" plt model, not the old one that put plt
code in the data segment. TLS is untested but may work. invoking the
dynamic linker explicitly to load a program does not yet handle argv
correctly.
|
| |
|
| |
|
|
|
|
|
|
| |
although a number is reserved for it, this option is not implemented
on Linux and does not work. defining it causes some applications to
use it, and subsequently break due to its failure.
|
| |
|
|
|
|
|
| |
previous version did not compare at all; it was just a fancy atomic
write. untested. further atomic fixes may be needed.
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
| |
|
|
|
|
| |
these macros are supported by more compilers
|
| |
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
despite documentation that makes it sound a lot different, the only
ABI-constraint difference between TLS variants II and I seems to be
that variant II stores the initial TLS segment immediately below the
thread pointer (i.e. the thread pointer points to the end of it) and
variant I stores the initial TLS segment above the thread pointer,
requiring the thread descriptor to be stored below. the actual value
stored in the thread pointer register also tends to have per-arch
random offsets applied to it for silly micro-optimization purposes.
with these changes applied, TLS should be basically working on all
supported archs except microblaze. I'm still working on getting the
necessary information and a working toolchain that can build TLS
binaries for microblaze, but in theory, static-linked programs with
TLS and dynamic-linked programs where only the main executable uses
TLS should already work on microblaze.
alignment constraints have not yet been heavily tested, so it's
possible that this code does not always align TLS segments correctly
on archs that need TLS variant I.
|
|
|
|
|
|
|
|
| |
this is actually a rather subtle issue: do arrays decay to pointers
when used as inline asm args? gcc says yes, but currently pcc says no.
hopefully this discrepency in pcc will be fixed, but since the
behavior is not clearly defined anywhere I can find, I'm using an
explicit operation to cause the decay to occur.
|
|
|
|
|
|
| |
this doubles the performance of the fastest syscalls on the atom I
tested it on; improvement is reportedly much more dramatic on
worst-case cpus. cannot be used for cancellable syscalls.
|
| |
|
|
|
|
|
|
|
|
| |
currently, only i386 is tested. x86_64 and arm should probably work.
the necessary relocation types for mips and microblaze have not been
added because I don't understand how they're supposed to work, and I'm
not even sure if it's defined yet on microblaze. I may be able to
reverse engineer the requirements out of gcc/binutils output.
|