| Commit message (Collapse) | Author | Age | Files | Lines |
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
the issue at hand is that many syscalls require as an argument the
kernel-ABI size of sigset_t, intended to allow the kernel to switch to
a larger sigset_t in the future. previously, each arch was defining
this size in syscall_arch.h, which was redundant with the definition
of _NSIG in bits/signal.h. as it's used in some not-quite-portable
application code as well, _NSIG is much more likely to be recognized
and understood immediately by someone reading the code, and it's also
shorter and less cluttered.
note that _NSIG is actually 65/129, not 64/128, but the division takes
care of throwing away the off-by-one part.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
wctype_t was incorrectly "int" rather than "long" on x86_64. not only
is this an ABI incompatibility; it's also a major design flaw if we
ever wanted wctype_t to be implemented as a pointer, which would be
necessary if locales support custom character classes, since int is
too small to store a converted pointer. this commit fixes wctype_t to
be unsigned long on all archs, matching the LSB ABI; this change does
not matter for C code, but for C++ it affects mangling.
the same issue applied to wctrans_t. glibc/LSB defines this type as
const __int32_t *, but since no such definition is visible, I've just
expanded the definition, int, everywhere.
it would be nice if these types (which don't vary by arch) could be in
wctype.h, but the OB XSI requirement in POSIX that wchar.h expose some
types and functions from wctype.h precludes doing so. glibc works
around this with some hideous hacks, but trying to duplicate that
would go against the intent of musl's headers.
|
| |
|
| |
|
|
|
|
| |
these are also needed by qemu.
|
|
|
|
|
| |
this is needed for qemu, and since it differs for each arch
it can't be circumvented easily by using a macro in CFLAGS.
|
| |
|
|
|
|
|
|
|
|
| |
these structures are purely for use by trace/debug tools and tools
working with core files. the definition of fpregset_t, which was
previously here, has been removed because it was wrong; fpregset_t
should be the type used in mcontext_t, not the type used in
ptrace/core stuff.
|
|
|
|
|
|
| |
aside from microblaze, these should be roughly correct for all archs
now. some misc junk macros and typedefs are missing, which should
probably be added for max compatibility with trace/debug tools.
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
with these changes, the members/types of mcontext_t and related stuff
should closely match the glibc definitions. unlike glibc, however, the
definitions here avoid using typedefs as much as possible and work
directly with the underlying types, to minimize namespace pollution
from signal.h in the default (_BSD_SOURCE) profile.
this is a first step in improving compatibility with applications
which poke at context/register information -- mainly debuggers, trace
utilities, etc. additional definitions in ucontext.h and other headers
may be needed later.
if feature test macros are used to request a conforming namespace,
mcontext_t is replaced with an opaque structure of the equivalent size
and alignment; conforming programs cannot examine its contents anyway.
|
| |
|
|
|
|
|
|
|
|
| |
unlike the previous definition, NSIG/_NSIG is supposed to be one more
than the highest signal number. adding this will allow simplifying
libc-internal code that makes signal-related syscalls, which can be
done as a later step. some apps might use it too; while this usage is
questionable, it's at least not insane.
|
|
|
|
|
|
| |
apparently some other archs have sys/io.h and should not break just
because they don't have the x86 port io functions. provide a blank
bits/io.h everywhere for now.
|
|
|
|
|
|
| |
put some macros that do not differ between architectures in the
main header and remove from bits.
restructure mips header so it has the same structure as the others.
|
|
|
|
|
|
| |
although a number is reserved for it, this option is not implemented
on Linux and does not work. defining it causes some applications to
use it, and subsequently break due to its failure.
|
| |
|
|
|
|
| |
these macros are supported by more compilers
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
despite documentation that makes it sound a lot different, the only
ABI-constraint difference between TLS variants II and I seems to be
that variant II stores the initial TLS segment immediately below the
thread pointer (i.e. the thread pointer points to the end of it) and
variant I stores the initial TLS segment above the thread pointer,
requiring the thread descriptor to be stored below. the actual value
stored in the thread pointer register also tends to have per-arch
random offsets applied to it for silly micro-optimization purposes.
with these changes applied, TLS should be basically working on all
supported archs except microblaze. I'm still working on getting the
necessary information and a working toolchain that can build TLS
binaries for microblaze, but in theory, static-linked programs with
TLS and dynamic-linked programs where only the main executable uses
TLS should already work on microblaze.
alignment constraints have not yet been heavily tested, so it's
possible that this code does not always align TLS segments correctly
on archs that need TLS variant I.
|
|
|
|
|
|
|
|
| |
currently, only i386 is tested. x86_64 and arm should probably work.
the necessary relocation types for mips and microblaze have not been
added because I don't understand how they're supposed to work, and I'm
not even sure if it's defined yet on microblaze. I may be able to
reverse engineer the requirements out of gcc/binutils output.
|
|
|
|
|
| |
not tested on mips and arm; they may still be broken. x86_64 should be
ok now.
|
|
|
|
|
| |
the linux O_PATH mode provides the necessary semantics for both the
O_SEARCH and O_EXEC modes defined and required by POSIX 2008.
|
|
|
|
|
|
|
|
| |
if same register is used for input/output, the compiler must be told.
otherwise is generates random junk code that clobbers the result. in
pure syscall-wrapper functions, nothing went wrong, but in more
complex functions where register allocation is non-trivial, things
broke badly.
|
|
|
|
|
|
|
| |
I'm not 100% sure that Linux's O_PATH meets the POSIX requirements for
O_SEARCH, but it seems very close if not perfect. and old kernels
ignore it, so O_SEARCH will still work as desired as long as the
caller has read permissions to the directory.
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
by using the "ir" constraint (immediate or register) and the carefully
constructed instruction addu $2,$0,%2 which can take either an
immediate or a register for %2, the new inline asm admits maximal
optimization with no register spillage to the stack when the compiler
successfully performs constant propagration, but still works by
allocating a register when the syscall number cannot be recognized as
a constant. in the case of syscalls with 0-3 arguments it barely
matters, but for 4-argument syscalls, using an immediate for the
syscall number avoids creating a stack frame for the syscall wrapper
function.
|
|
|
|
|
|
|
|
|
| |
all past and current kernel versions have done so, but there seems to
be no reason it's necessary and the sentiment from everyone I've asked
has been that we should not rely on it. instead, use r7 (an argument
register) which will necessarily be preserved upon syscall restart.
however this only works for 0-3 argument syscalls, and we have to
resort to the function call for 4-argument syscalls.
|
|
|
|
|
|
|
| |
this drastically reduces the size of some functions which are purely
syscall wrappers.
disabled for clang due to known bugs satisfying register constraints.
|
|
|
|
|
|
|
|
|
|
|
|
| |
now public syscall.h only exposes __NR_* and SYS_* constants and the
variadic syscall function. no macros or inline functions, no
__syscall_ret or other internal details, no 16-/32-bit legacy syscall
renaming, etc. this logic has all been moved to src/internal/syscall.h
with the arch-specific parts in arch/$(ARCH)/syscall_arch.h, and the
amount of arch-specific stuff has been reduced to a minimum.
changes still need to be reviewed/double-checked. minimal testing on
i386 and mips has already been performed.
|
|
|
|
|
|
|
|
|
|
| |
clang does not presently support the "v" constraint we want to use to
get the result from $3, and trying to use register...__asm__("$3") to
do the same invokes serious compiler bugs. so for now, i'm working
around the issue with an extra temp register and putting $3 in the
clobber list instead of using it as output. when the bugs in clang are
fixed, this issue should be revisited to generate smaller/faster code
like what gcc gets.
|
|
|
|
|
|
|
|
|
| |
while musl itself requires a c99 compiler, some applications insist on
being compiled with c89 compilers, and use of "inline" in the headers
was breaking them. much of this had been avoided already by just
skipping the inline keyword in pre-c99 compilers or modes, but this
new unified solution is cleaner and may/should result in better code
generation in the default gcc configuration.
|
|
|
|
|
|
| |
linux guarantees ll/sc are always available. on mips1, they will be
emulated by the kernel. thus they are part of the linux mips1 abi and
safe to use.
|
| |
|
|
|
|
| |
yet another gratuitous mips incompatibility...
|
|
|
|
| |
untested; hopefully it's right now
|
| |
|
|
|
|
|
| |
why does mips have to be gratuitously incompatible in every possible
imaginable way?
|
| |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| |
not heavily tested, but the basics are working. the basic concept is
that the dynamic linker entry point code invokes a pure-PIC (no global
accesses) C function in reloc.h to perform the early GOT relocations
needed to make the dynamic linker itself functional, then invokes
__dynlink like on other archs. since mips uses some ugly arch-specific
hacks to optimize relocating the GOT (rather than just using the
normal DT_REL[A] tables like on other archs), the dynamic linker has
been modified slightly to support calling arch-specific relocation
code in reloc.h.
most of the actual mips-specific behavior was developed by reading the
output of readelf on libc.so and simple executable files. i could not
find good reference information on which relocation types need to be
supported or their semantics, so it's possible that some legitimate
usage cases will not work yet.
|
|
|
|
|
|
|
| |
also fix the alignment of jmp_buf to meet the abi. linux always
emulates fpu on mips if it's not present, so enabling this code
unconditionally is "safe" but may be slow. in the long term it may be
preferable to find a way to disable it on soft float builds.
|
|
|
|
| |
sc was overwriting the result
|
|
|
|
|
|
| |
the fields in the mcontext_t are long long (for no good reason) even
on 32-bit mips, so the offset of the instruction pointer (as a word)
varies depending on endianness.
|
|
|
|
|
|
|
|
|
| |
the kernel wrongly expects the cmsg length field to be size_t instead
of socklen_t. in order to work around the issue, we have to impose a
length limit and copy to a local buffer. the length limit should be
more than sufficient for any real-world use; these headers are only
used for passing file descriptors and permissions between processes
over unix sockets.
|
|
|
|
| |
this fix is easier than trying to reorder the header stuff
|
|
|
|
| |
signal handling was very broken because of this
|
|
|
|
|
| |
like arm, mips requires 64-bit arguments to be "aligned" on an even
register boundary.
|
|
|
|
|
| |
otherwise offs in ucontext_t will be wrong, and break code that
inspects or modifies the signal makes (including cancellation code).
|
| |
|
|
basically, this version of the code was obtained by starting with
rdp's work from his ellcc source tree, adapting it to musl's build
system and coding style, auditing the bits headers for discrepencies
with kernel definitions or glibc/LSB ABI or large file issues, fixing
up incompatibility with the old binutils from aboriginal linux, and
adding some new special cases to deal with the oddities of sigaction
and pipe syscall interfaces on mips.
at present, minimal test programs work, but some interfaces are broken
or missing. threaded programs probably will not link.
|