about summary refs log tree commit diff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
-rw-r--r--src/math/__log1p.h94
-rw-r--r--src/math/__log1pf.h35
-rw-r--r--src/math/log.c84
-rw-r--r--src/math/log10.c99
-rw-r--r--src/math/log10f.c84
-rw-r--r--src/math/log10l.c7
-rw-r--r--src/math/log1p.c148
-rw-r--r--src/math/log1pf.c125
-rw-r--r--src/math/log1pl.c2
-rw-r--r--src/math/log2.c91
-rw-r--r--src/math/log2f.c95
-rw-r--r--src/math/log2l.c2
-rw-r--r--src/math/logf.c78
-rw-r--r--src/math/logl.c8
14 files changed, 369 insertions, 583 deletions
diff --git a/src/math/__log1p.h b/src/math/__log1p.h
deleted file mode 100644
index 57187115..00000000
--- a/src/math/__log1p.h
+++ /dev/null
@@ -1,94 +0,0 @@
-/* origin: FreeBSD /usr/src/lib/msun/src/k_log.h */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunSoft, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/*
- * __log1p(f):
- * Return log(1+f) - f for 1+f in ~[sqrt(2)/2, sqrt(2)].
- *
- * The following describes the overall strategy for computing
- * logarithms in base e.  The argument reduction and adding the final
- * term of the polynomial are done by the caller for increased accuracy
- * when different bases are used.
- *
- * Method :
- *   1. Argument Reduction: find k and f such that
- *                      x = 2^k * (1+f),
- *         where  sqrt(2)/2 < 1+f < sqrt(2) .
- *
- *   2. Approximation of log(1+f).
- *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
- *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
- *               = 2s + s*R
- *      We use a special Reme algorithm on [0,0.1716] to generate
- *      a polynomial of degree 14 to approximate R The maximum error
- *      of this polynomial approximation is bounded by 2**-58.45. In
- *      other words,
- *                      2      4      6      8      10      12      14
- *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
- *      (the values of Lg1 to Lg7 are listed in the program)
- *      and
- *          |      2          14          |     -58.45
- *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2
- *          |                             |
- *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
- *      In order to guarantee error in log below 1ulp, we compute log
- *      by
- *              log(1+f) = f - s*(f - R)        (if f is not too large)
- *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
- *
- *      3. Finally,  log(x) = k*ln2 + log(1+f).
- *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
- *         Here ln2 is split into two floating point number:
- *                      ln2_hi + ln2_lo,
- *         where n*ln2_hi is always exact for |n| < 2000.
- *
- * Special cases:
- *      log(x) is NaN with signal if x < 0 (including -INF) ;
- *      log(+INF) is +INF; log(0) is -INF with signal;
- *      log(NaN) is that NaN with no signal.
- *
- * Accuracy:
- *      according to an error analysis, the error is always less than
- *      1 ulp (unit in the last place).
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following
- * constants. The decimal values may be used, provided that the
- * compiler will convert from decimal to binary accurately enough
- * to produce the hexadecimal values shown.
- */
-
-static const double
-Lg1 = 6.666666666666735130e-01, /* 3FE55555 55555593 */
-Lg2 = 3.999999999940941908e-01, /* 3FD99999 9997FA04 */
-Lg3 = 2.857142874366239149e-01, /* 3FD24924 94229359 */
-Lg4 = 2.222219843214978396e-01, /* 3FCC71C5 1D8E78AF */
-Lg5 = 1.818357216161805012e-01, /* 3FC74664 96CB03DE */
-Lg6 = 1.531383769920937332e-01, /* 3FC39A09 D078C69F */
-Lg7 = 1.479819860511658591e-01; /* 3FC2F112 DF3E5244 */
-
-/*
- * We always inline __log1p(), since doing so produces a
- * substantial performance improvement (~40% on amd64).
- */
-static inline double __log1p(double f)
-{
-	double_t hfsq,s,z,R,w,t1,t2;
-
-	s = f/(2.0+f);
-	z = s*s;
-	w = z*z;
-	t1= w*(Lg2+w*(Lg4+w*Lg6));
-	t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
-	R = t2+t1;
-	hfsq = 0.5*f*f;
-	return s*(hfsq+R);
-}
diff --git a/src/math/__log1pf.h b/src/math/__log1pf.h
deleted file mode 100644
index f2fbef29..00000000
--- a/src/math/__log1pf.h
+++ /dev/null
@@ -1,35 +0,0 @@
-/* origin: FreeBSD /usr/src/lib/msun/src/k_logf.h */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-/*
- * See comments in __log1p.h.
- */
-
-/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
-static const float
-Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
-Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
-Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
-Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
-
-static inline float __log1pf(float f)
-{
-	float_t hfsq,s,z,R,w,t1,t2;
-
-	s = f/(2.0f + f);
-	z = s*s;
-	w = z*z;
-	t1 = w*(Lg2+w*Lg4);
-	t2 = z*(Lg1+w*Lg3);
-	R = t2+t1;
-	hfsq = 0.5f * f * f;
-	return s*(hfsq+R);
-}
diff --git a/src/math/log.c b/src/math/log.c
index 98051205..e61e113d 100644
--- a/src/math/log.c
+++ b/src/math/log.c
@@ -10,7 +10,7 @@
  * ====================================================
  */
 /* log(x)
- * Return the logrithm of x
+ * Return the logarithm of x
  *
  * Method :
  *   1. Argument Reduction: find k and f such that
@@ -60,12 +60,12 @@
  * to produce the hexadecimal values shown.
  */
 
-#include "libm.h"
+#include <math.h>
+#include <stdint.h>
 
 static const double
 ln2_hi = 6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
 ln2_lo = 1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
-two54  = 1.80143985094819840000e+16,  /* 43500000 00000000 */
 Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
 Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
 Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
@@ -76,63 +76,43 @@ Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
 
 double log(double x)
 {
-	double hfsq,f,s,z,R,w,t1,t2,dk;
-	int32_t k,hx,i,j;
-	uint32_t lx;
-
-	EXTRACT_WORDS(hx, lx, x);
+	union {double f; uint64_t i;} u = {x};
+	double_t hfsq,f,s,z,R,w,t1,t2,dk;
+	uint32_t hx;
+	int k;
 
+	hx = u.i>>32;
 	k = 0;
-	if (hx < 0x00100000) {  /* x < 2**-1022  */
-		if (((hx&0x7fffffff)|lx) == 0)
-			return -two54/0.0;  /* log(+-0)=-inf */
-		if (hx < 0)
-			return (x-x)/0.0;   /* log(-#) = NaN */
-		/* subnormal number, scale up x */
+	if (hx < 0x00100000 || hx>>31) {
+		if (u.i<<1 == 0)
+			return -1/(x*x);  /* log(+-0)=-inf */
+		if (hx>>31)
+			return (x-x)/0.0; /* log(-#) = NaN */
+		/* subnormal number, scale x up */
 		k -= 54;
-		x *= two54;
-		GET_HIGH_WORD(hx,x);
-	}
-	if (hx >= 0x7ff00000)
-		return x+x;
-	k += (hx>>20) - 1023;
-	hx &= 0x000fffff;
-	i = (hx+0x95f64)&0x100000;
-	SET_HIGH_WORD(x, hx|(i^0x3ff00000));  /* normalize x or x/2 */
-	k += i>>20;
+		x *= 0x1p54;
+		u.f = x;
+		hx = u.i>>32;
+	} else if (hx >= 0x7ff00000) {
+		return x;
+	} else if (hx == 0x3ff00000 && u.i<<32 == 0)
+		return 0;
+
+	/* reduce x into [sqrt(2)/2, sqrt(2)] */
+	hx += 0x3ff00000 - 0x3fe6a09e;
+	k += (int)(hx>>20) - 0x3ff;
+	hx = (hx&0x000fffff) + 0x3fe6a09e;
+	u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
+	x = u.f;
+
 	f = x - 1.0;
-	if ((0x000fffff&(2+hx)) < 3) {  /* -2**-20 <= f < 2**-20 */
-		if (f == 0.0) {
-			if (k == 0) {
-				return 0.0;
-			}
-			dk = (double)k;
-			return dk*ln2_hi + dk*ln2_lo;
-		}
-		R = f*f*(0.5-0.33333333333333333*f);
-		if (k == 0)
-			return f - R;
-		dk = (double)k;
-		return dk*ln2_hi - ((R-dk*ln2_lo)-f);
-	}
+	hfsq = 0.5*f*f;
 	s = f/(2.0+f);
-	dk = (double)k;
 	z = s*s;
-	i = hx - 0x6147a;
 	w = z*z;
-	j = 0x6b851 - hx;
 	t1 = w*(Lg2+w*(Lg4+w*Lg6));
 	t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
-	i |= j;
 	R = t2 + t1;
-	if (i > 0) {
-		hfsq = 0.5*f*f;
-		if (k == 0)
-			return f - (hfsq-s*(hfsq+R));
-		return dk*ln2_hi - ((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
-	} else {
-		if (k == 0)
-			return f - s*(f-R);
-		return dk*ln2_hi - ((s*(f-R)-dk*ln2_lo)-f);
-	}
+	dk = k;
+	return s*(hfsq+R) + dk*ln2_lo - hfsq + f + dk*ln2_hi;
 }
diff --git a/src/math/log10.c b/src/math/log10.c
index ed65d9be..81026876 100644
--- a/src/math/log10.c
+++ b/src/math/log10.c
@@ -10,72 +10,91 @@
  * ====================================================
  */
 /*
- * Return the base 10 logarithm of x.  See e_log.c and k_log.h for most
- * comments.
+ * Return the base 10 logarithm of x.  See log.c for most comments.
  *
- *    log10(x) = (f - 0.5*f*f + k_log1p(f)) / ln10 + k * log10(2)
- * in not-quite-routine extra precision.
+ * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
+ * as in log.c, then combine and scale in extra precision:
+ *    log10(x) = (f - f*f/2 + r)/log(10) + k*log10(2)
  */
 
-#include "libm.h"
-#include "__log1p.h"
+#include <math.h>
+#include <stdint.h>
 
 static const double
-two54     = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
 ivln10hi  = 4.34294481878168880939e-01, /* 0x3fdbcb7b, 0x15200000 */
 ivln10lo  = 2.50829467116452752298e-11, /* 0x3dbb9438, 0xca9aadd5 */
 log10_2hi = 3.01029995663611771306e-01, /* 0x3FD34413, 0x509F6000 */
-log10_2lo = 3.69423907715893078616e-13; /* 0x3D59FEF3, 0x11F12B36 */
+log10_2lo = 3.69423907715893078616e-13, /* 0x3D59FEF3, 0x11F12B36 */
+Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
+Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
+Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
+Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
+Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
+Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
+Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
 
 double log10(double x)
 {
-	double f,hfsq,hi,lo,r,val_hi,val_lo,w,y,y2;
-	int32_t i,k,hx;
-	uint32_t lx;
-
-	EXTRACT_WORDS(hx, lx, x);
+	union {double f; uint64_t i;} u = {x};
+	double_t hfsq,f,s,z,R,w,t1,t2,dk,y,hi,lo,val_hi,val_lo;
+	uint32_t hx;
+	int k;
 
+	hx = u.i>>32;
 	k = 0;
-	if (hx < 0x00100000) {  /* x < 2**-1022  */
-		if (((hx&0x7fffffff)|lx) == 0)
-			return -two54/0.0;  /* log(+-0)=-inf */
-		if (hx<0)
-			return (x-x)/0.0;   /* log(-#) = NaN */
-		/* subnormal number, scale up x */
+	if (hx < 0x00100000 || hx>>31) {
+		if (u.i<<1 == 0)
+			return -1/(x*x);  /* log(+-0)=-inf */
+		if (hx>>31)
+			return (x-x)/0.0; /* log(-#) = NaN */
+		/* subnormal number, scale x up */
 		k -= 54;
-		x *= two54;
-		GET_HIGH_WORD(hx, x);
-	}
-	if (hx >= 0x7ff00000)
-		return x+x;
-	if (hx == 0x3ff00000 && lx == 0)
-		return 0.0;  /* log(1) = +0 */
-	k += (hx>>20) - 1023;
-	hx &= 0x000fffff;
-	i = (hx+0x95f64)&0x100000;
-	SET_HIGH_WORD(x, hx|(i^0x3ff00000));  /* normalize x or x/2 */
-	k += i>>20;
-	y = (double)k;
+		x *= 0x1p54;
+		u.f = x;
+		hx = u.i>>32;
+	} else if (hx >= 0x7ff00000) {
+		return x;
+	} else if (hx == 0x3ff00000 && u.i<<32 == 0)
+		return 0;
+
+	/* reduce x into [sqrt(2)/2, sqrt(2)] */
+	hx += 0x3ff00000 - 0x3fe6a09e;
+	k += (int)(hx>>20) - 0x3ff;
+	hx = (hx&0x000fffff) + 0x3fe6a09e;
+	u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
+	x = u.f;
+
 	f = x - 1.0;
 	hfsq = 0.5*f*f;
-	r = __log1p(f);
+	s = f/(2.0+f);
+	z = s*s;
+	w = z*z;
+	t1 = w*(Lg2+w*(Lg4+w*Lg6));
+	t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+	R = t2 + t1;
 
 	/* See log2.c for details. */
+	/* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
 	hi = f - hfsq;
-	SET_LOW_WORD(hi, 0);
-	lo = (f - hi) - hfsq + r;
+	u.f = hi;
+	u.i &= (uint64_t)-1<<32;
+	hi = u.f;
+	lo = f - hi - hfsq + s*(hfsq+R);
+
+	/* val_hi+val_lo ~ log10(1+f) + k*log10(2) */
 	val_hi = hi*ivln10hi;
-	y2 = y*log10_2hi;
-	val_lo = y*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi;
+	dk = k;
+	y = dk*log10_2hi;
+	val_lo = dk*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi;
 
 	/*
-	 * Extra precision in for adding y*log10_2hi is not strictly needed
+	 * Extra precision in for adding y is not strictly needed
 	 * since there is no very large cancellation near x = sqrt(2) or
 	 * x = 1/sqrt(2), but we do it anyway since it costs little on CPUs
 	 * with some parallelism and it reduces the error for many args.
 	 */
-	w = y2 + val_hi;
-	val_lo += (y2 - w) + val_hi;
+	w = y + val_hi;
+	val_lo += (y - w) + val_hi;
 	val_hi = w;
 
 	return val_lo + val_hi;
diff --git a/src/math/log10f.c b/src/math/log10f.c
index e10749b5..9ca2f017 100644
--- a/src/math/log10f.c
+++ b/src/math/log10f.c
@@ -13,57 +13,65 @@
  * See comments in log10.c.
  */
 
-#include "libm.h"
-#include "__log1pf.h"
+#include <math.h>
+#include <stdint.h>
 
 static const float
-two25     =  3.3554432000e+07, /* 0x4c000000 */
 ivln10hi  =  4.3432617188e-01, /* 0x3ede6000 */
 ivln10lo  = -3.1689971365e-05, /* 0xb804ead9 */
 log10_2hi =  3.0102920532e-01, /* 0x3e9a2080 */
-log10_2lo =  7.9034151668e-07; /* 0x355427db */
+log10_2lo =  7.9034151668e-07, /* 0x355427db */
+/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
+Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
+Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
+Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
 
 float log10f(float x)
 {
-	float f,hfsq,hi,lo,r,y;
-	int32_t i,k,hx;
-
-	GET_FLOAT_WORD(hx, x);
+	union {float f; uint32_t i;} u = {x};
+	float_t hfsq,f,s,z,R,w,t1,t2,dk,hi,lo;
+	uint32_t ix;
+	int k;
 
+	ix = u.i;
 	k = 0;
-	if (hx < 0x00800000) {  /* x < 2**-126  */
-		if ((hx&0x7fffffff) == 0)
-			return -two25/0.0f;  /* log(+-0)=-inf */
-		if (hx < 0)
-			return (x-x)/0.0f;   /* log(-#) = NaN */
+	if (ix < 0x00800000 || ix>>31) {  /* x < 2**-126  */
+		if (ix<<1 == 0)
+			return -1/(x*x);  /* log(+-0)=-inf */
+		if (ix>>31)
+			return (x-x)/0.0f; /* log(-#) = NaN */
 		/* subnormal number, scale up x */
 		k -= 25;
-		x *= two25;
-		GET_FLOAT_WORD(hx, x);
-	}
-	if (hx >= 0x7f800000)
-		return x+x;
-	if (hx == 0x3f800000)
-		return 0.0f;  /* log(1) = +0 */
-	k += (hx>>23) - 127;
-	hx &= 0x007fffff;
-	i = (hx+(0x4afb0d))&0x800000;
-	SET_FLOAT_WORD(x, hx|(i^0x3f800000));  /* normalize x or x/2 */
-	k += i>>23;
-	y = (float)k;
+		x *= 0x1p25f;
+		u.f = x;
+		ix = u.i;
+	} else if (ix >= 0x7f800000) {
+		return x;
+	} else if (ix == 0x3f800000)
+		return 0;
+
+	/* reduce x into [sqrt(2)/2, sqrt(2)] */
+	ix += 0x3f800000 - 0x3f3504f3;
+	k += (int)(ix>>23) - 0x7f;
+	ix = (ix&0x007fffff) + 0x3f3504f3;
+	u.i = ix;
+	x = u.f;
+
 	f = x - 1.0f;
-	hfsq = 0.5f * f * f;
-	r = __log1pf(f);
+	s = f/(2.0f + f);
+	z = s*s;
+	w = z*z;
+	t1= w*(Lg2+w*Lg4);
+	t2= z*(Lg1+w*Lg3);
+	R = t2 + t1;
+	hfsq = 0.5f*f*f;
 
-// FIXME
-//      /* See log2f.c and log2.c for details. */
-//      if (sizeof(float_t) > sizeof(float))
-//              return (r - hfsq + f) * ((float_t)ivln10lo + ivln10hi) +
-//                  y * ((float_t)log10_2lo + log10_2hi);
 	hi = f - hfsq;
-	GET_FLOAT_WORD(hx, hi);
-	SET_FLOAT_WORD(hi, hx&0xfffff000);
-	lo = (f - hi) - hfsq + r;
-	return y*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi +
-	        hi*ivln10hi + y*log10_2hi;
+	u.f = hi;
+	u.i &= 0xfffff000;
+	hi = u.f;
+	lo = f - hi - hfsq + s*(hfsq+R);
+	dk = k;
+	return dk*log10_2lo + (lo+hi)*ivln10lo + lo*ivln10hi + hi*ivln10hi + dk*log10_2hi;
 }
diff --git a/src/math/log10l.c b/src/math/log10l.c
index f0eeeafb..c7aacf90 100644
--- a/src/math/log10l.c
+++ b/src/math/log10l.c
@@ -117,16 +117,15 @@ static const long double S[4] = {
 
 long double log10l(long double x)
 {
-	long double y;
-	volatile long double z;
+	long double y, z;
 	int e;
 
 	if (isnan(x))
 		return x;
 	if(x <= 0.0) {
 		if(x == 0.0)
-			return -1.0 / (x - x);
-		return (x - x) / (x - x);
+			return -1.0 / (x*x);
+		return (x - x) / 0.0;
 	}
 	if (x == INFINITY)
 		return INFINITY;
diff --git a/src/math/log1p.c b/src/math/log1p.c
index a71ac423..00971349 100644
--- a/src/math/log1p.c
+++ b/src/math/log1p.c
@@ -10,6 +10,7 @@
  * ====================================================
  */
 /* double log1p(double x)
+ * Return the natural logarithm of 1+x.
  *
  * Method :
  *   1. Argument Reduction: find k and f such that
@@ -23,31 +24,9 @@
  *      and add back the correction term c/u.
  *      (Note: when x > 2**53, one can simply return log(x))
  *
- *   2. Approximation of log1p(f).
- *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
- *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
- *               = 2s + s*R
- *      We use a special Reme algorithm on [0,0.1716] to generate
- *      a polynomial of degree 14 to approximate R The maximum error
- *      of this polynomial approximation is bounded by 2**-58.45. In
- *      other words,
- *                      2      4      6      8      10      12      14
- *          R(z) ~ Lp1*s +Lp2*s +Lp3*s +Lp4*s +Lp5*s  +Lp6*s  +Lp7*s
- *      (the values of Lp1 to Lp7 are listed in the program)
- *      and
- *          |      2          14          |     -58.45
- *          | Lp1*s +...+Lp7*s    -  R(z) | <= 2
- *          |                             |
- *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
- *      In order to guarantee error in log below 1ulp, we compute log
- *      by
- *              log1p(f) = f - (hfsq - s*(hfsq+R)).
+ *   2. Approximation of log(1+f): See log.c
  *
- *      3. Finally, log1p(x) = k*ln2 + log1p(f).
- *                           = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
- *         Here ln2 is split into two floating point number:
- *                      ln2_hi + ln2_lo,
- *         where n*ln2_hi is always exact for |n| < 2000.
+ *   3. Finally, log1p(x) = k*ln2 + log(1+f) + c/u. See log.c
  *
  * Special cases:
  *      log1p(x) is NaN with signal if x < -1 (including -INF) ;
@@ -79,94 +58,65 @@
 static const double
 ln2_hi = 6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
 ln2_lo = 1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
-two54  = 1.80143985094819840000e+16,  /* 43500000 00000000 */
-Lp1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
-Lp2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
-Lp3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
-Lp4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
-Lp5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
-Lp6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
-Lp7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
+Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
+Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
+Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
+Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
+Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
+Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
+Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
 
 double log1p(double x)
 {
-	double hfsq,f,c,s,z,R,u;
-	int32_t k,hx,hu,ax;
-
-	GET_HIGH_WORD(hx, x);
-	ax = hx & 0x7fffffff;
+	union {double f; uint64_t i;} u = {x};
+	double_t hfsq,f,c,s,z,R,w,t1,t2,dk;
+	uint32_t hx,hu;
+	int k;
 
+	hx = u.i>>32;
 	k = 1;
-	if (hx < 0x3FDA827A) {  /* 1+x < sqrt(2)+ */
-		if (ax >= 0x3ff00000) {  /* x <= -1.0 */
-			if (x == -1.0)
-				return -two54/0.0; /* log1p(-1)=+inf */
-			return (x-x)/(x-x);         /* log1p(x<-1)=NaN */
+	if (hx < 0x3fda827a || hx>>31) {  /* 1+x < sqrt(2)+ */
+		if (hx >= 0xbff00000) {  /* x <= -1.0 */
+			if (x == -1)
+				return x/0.0; /* log1p(-1) = -inf */
+			return (x-x)/0.0;     /* log1p(x<-1) = NaN */
 		}
-		if (ax < 0x3e200000) {   /* |x| < 2**-29 */
-			/* if 0x1p-1022 <= |x| < 0x1p-54, avoid raising underflow */
-			if (ax < 0x3c900000 && ax >= 0x00100000)
-				return x;
-#if FLT_EVAL_METHOD != 0
-			FORCE_EVAL((float)x);
-#endif
-			return x - x*x*0.5;
+		if (hx<<1 < 0x3ca00000<<1) {  /* |x| < 2**-53 */
+			/* underflow if subnormal */
+			if ((hx&0x7ff00000) == 0)
+				FORCE_EVAL((float)x);
+			return x;
 		}
-		if (hx > 0 || hx <= (int32_t)0xbfd2bec4) {  /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
+		if (hx <= 0xbfd2bec4) {  /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
 			k = 0;
+			c = 0;
 			f = x;
-			hu = 1;
 		}
-	}
-	if (hx >= 0x7ff00000)
-		return x+x;
-	if (k != 0) {
-		if (hx < 0x43400000) {
-			u = 1 + x;
-			GET_HIGH_WORD(hu, u);
-			k = (hu>>20) - 1023;
-			c = k > 0 ? 1.0-(u-x) : x-(u-1.0); /* correction term */
-			c /= u;
-		} else {
-			u = x;
-			GET_HIGH_WORD(hu,u);
-			k = (hu>>20) - 1023;
+	} else if (hx >= 0x7ff00000)
+		return x;
+	if (k) {
+		u.f = 1 + x;
+		hu = u.i>>32;
+		hu += 0x3ff00000 - 0x3fe6a09e;
+		k = (int)(hu>>20) - 0x3ff;
+		/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
+		if (k < 54) {
+			c = k >= 2 ? 1-(u.f-x) : x-(u.f-1);
+			c /= u.f;
+		} else
 			c = 0;
-		}
-		hu &= 0x000fffff;
-		/*
-		 * The approximation to sqrt(2) used in thresholds is not
-		 * critical.  However, the ones used above must give less
-		 * strict bounds than the one here so that the k==0 case is
-		 * never reached from here, since here we have committed to
-		 * using the correction term but don't use it if k==0.
-		 */
-		if (hu < 0x6a09e) {  /* u ~< sqrt(2) */
-			SET_HIGH_WORD(u, hu|0x3ff00000); /* normalize u */
-		} else {
-			k += 1;
-			SET_HIGH_WORD(u, hu|0x3fe00000); /* normalize u/2 */
-			hu = (0x00100000-hu)>>2;
-		}
-		f = u - 1.0;
+		/* reduce u into [sqrt(2)/2, sqrt(2)] */
+		hu = (hu&0x000fffff) + 0x3fe6a09e;
+		u.i = (uint64_t)hu<<32 | (u.i&0xffffffff);
+		f = u.f - 1;
 	}
 	hfsq = 0.5*f*f;
-	if (hu == 0) {   /* |f| < 2**-20 */
-		if (f == 0.0) {
-			if(k == 0)
-				return 0.0;
-			c += k*ln2_lo;
-			return k*ln2_hi + c;
-		}
-		R = hfsq*(1.0 - 0.66666666666666666*f);
-		if (k == 0)
-			return f - R;
-		return k*ln2_hi - ((R-(k*ln2_lo+c))-f);
-	}
 	s = f/(2.0+f);
 	z = s*s;
-	R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
-	if (k == 0)
-		return f - (hfsq-s*(hfsq+R));
-	return k*ln2_hi - ((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
+	w = z*z;
+	t1 = w*(Lg2+w*(Lg4+w*Lg6));
+	t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+	R = t2 + t1;
+	dk = k;
+	return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi;
 }
diff --git a/src/math/log1pf.c b/src/math/log1pf.c
index e6940d29..23985c35 100644
--- a/src/math/log1pf.c
+++ b/src/math/log1pf.c
@@ -1,8 +1,5 @@
 /* origin: FreeBSD /usr/src/lib/msun/src/s_log1pf.c */
 /*
- * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
- */
-/*
  * ====================================================
  * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
  *
@@ -18,95 +15,63 @@
 static const float
 ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
 ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
-two25  = 3.355443200e+07,  /* 0x4c000000 */
-Lp1 = 6.6666668653e-01, /* 3F2AAAAB */
-Lp2 = 4.0000000596e-01, /* 3ECCCCCD */
-Lp3 = 2.8571429849e-01, /* 3E924925 */
-Lp4 = 2.2222198546e-01, /* 3E638E29 */
-Lp5 = 1.8183572590e-01, /* 3E3A3325 */
-Lp6 = 1.5313838422e-01, /* 3E1CD04F */
-Lp7 = 1.4798198640e-01; /* 3E178897 */
+/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
+Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
+Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
+Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
 
 float log1pf(float x)
 {
-	float hfsq,f,c,s,z,R,u;
-	int32_t k,hx,hu,ax;
-
-	GET_FLOAT_WORD(hx, x);
-	ax = hx & 0x7fffffff;
+	union {float f; uint32_t i;} u = {x};
+	float_t hfsq,f,c,s,z,R,w,t1,t2,dk;
+	uint32_t ix,iu;
+	int k;
 
+	ix = u.i;
 	k = 1;
-	if (hx < 0x3ed413d0) {  /* 1+x < sqrt(2)+  */
-		if (ax >= 0x3f800000) {  /* x <= -1.0 */
-			if (x == -1.0f)
-				return -two25/0.0f; /* log1p(-1)=+inf */
-			return (x-x)/(x-x);         /* log1p(x<-1)=NaN */
+	if (ix < 0x3ed413d0 || ix>>31) {  /* 1+x < sqrt(2)+  */
+		if (ix >= 0xbf800000) {  /* x <= -1.0 */
+			if (x == -1)
+				return x/0.0f; /* log1p(-1)=+inf */
+			return (x-x)/0.0f;     /* log1p(x<-1)=NaN */
 		}
-		if (ax < 0x38000000) {   /* |x| < 2**-15 */
-			/* if 0x1p-126 <= |x| < 0x1p-24, avoid raising underflow */
-			if (ax < 0x33800000 && ax >= 0x00800000)
-				return x;
-#if FLT_EVAL_METHOD != 0
-			FORCE_EVAL(x*x);
-#endif
-			return x - x*x*0.5f;
+		if (ix<<1 < 0x33800000<<1) {   /* |x| < 2**-24 */
+			/* underflow if subnormal */
+			if ((ix&0x7f800000) == 0)
+				FORCE_EVAL(x*x);
+			return x;
 		}
-		if (hx > 0 || hx <= (int32_t)0xbe95f619) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
+		if (ix <= 0xbe95f619) { /* sqrt(2)/2- <= 1+x < sqrt(2)+ */
 			k = 0;
+			c = 0;
 			f = x;
-			hu = 1;
 		}
-	}
-	if (hx >= 0x7f800000)
-		return x+x;
-	if (k != 0) {
-		if (hx < 0x5a000000) {
-			u = 1 + x;
-			GET_FLOAT_WORD(hu, u);
-			k = (hu>>23) - 127;
-			/* correction term */
-			c = k > 0 ? 1.0f-(u-x) : x-(u-1.0f);
-			c /= u;
-		} else {
-			u = x;
-			GET_FLOAT_WORD(hu,u);
-			k = (hu>>23) - 127;
+	} else if (ix >= 0x7f800000)
+		return x;
+	if (k) {
+		u.f = 1 + x;
+		iu = u.i;
+		iu += 0x3f800000 - 0x3f3504f3;
+		k = (int)(iu>>23) - 0x7f;
+		/* correction term ~ log(1+x)-log(u), avoid underflow in c/u */
+		if (k < 25) {
+			c = k >= 2 ? 1-(u.f-x) : x-(u.f-1);
+			c /= u.f;
+		} else
 			c = 0;
-		}
-		hu &= 0x007fffff;
-		/*
-		 * The approximation to sqrt(2) used in thresholds is not
-		 * critical.  However, the ones used above must give less
-		 * strict bounds than the one here so that the k==0 case is
-		 * never reached from here, since here we have committed to
-		 * using the correction term but don't use it if k==0.
-		 */
-		if (hu < 0x3504f4) {  /* u < sqrt(2) */
-			SET_FLOAT_WORD(u, hu|0x3f800000);  /* normalize u */
-		} else {
-			k += 1;
-			SET_FLOAT_WORD(u, hu|0x3f000000);  /* normalize u/2 */
-			hu = (0x00800000-hu)>>2;
-		}
-		f = u - 1.0f;
-	}
-	hfsq = 0.5f * f * f;
-	if (hu == 0) {  /* |f| < 2**-20 */
-		if (f == 0.0f) {
-			if (k == 0)
-				return 0.0f;
-			c += k*ln2_lo;
-			return k*ln2_hi+c;
-		}
-		R = hfsq*(1.0f - 0.66666666666666666f * f);
-		if (k == 0)
-			return f - R;
-		return k*ln2_hi - ((R-(k*ln2_lo+c))-f);
+		/* reduce u into [sqrt(2)/2, sqrt(2)] */
+		iu = (iu&0x007fffff) + 0x3f3504f3;
+		u.i = iu;
+		f = u.f - 1;
 	}
 	s = f/(2.0f + f);
 	z = s*s;
-	R = z*(Lp1+z*(Lp2+z*(Lp3+z*(Lp4+z*(Lp5+z*(Lp6+z*Lp7))))));
-	if (k == 0)
-		return f - (hfsq-s*(hfsq+R));
-	return k*ln2_hi - ((hfsq-(s*(hfsq+R)+(k*ln2_lo+c)))-f);
+	w = z*z;
+	t1= w*(Lg2+w*Lg4);
+	t2= z*(Lg1+w*Lg3);
+	R = t2 + t1;
+	hfsq = 0.5f*f*f;
+	dk = k;
+	return s*(hfsq+R) + (dk*ln2_lo+c) - hfsq + f + dk*ln2_hi;
 }
diff --git a/src/math/log1pl.c b/src/math/log1pl.c
index edb48df1..37da46d2 100644
--- a/src/math/log1pl.c
+++ b/src/math/log1pl.c
@@ -118,7 +118,7 @@ long double log1pl(long double xm1)
 	/* Test for domain errors.  */
 	if (x <= 0.0) {
 		if (x == 0.0)
-			return -1/x; /* -inf with divbyzero */
+			return -1/(x*x); /* -inf with divbyzero */
 		return 0/0.0f; /* nan with invalid */
 	}
 
diff --git a/src/math/log2.c b/src/math/log2.c
index 1974215d..0aafad4b 100644
--- a/src/math/log2.c
+++ b/src/math/log2.c
@@ -10,55 +10,66 @@
  * ====================================================
  */
 /*
- * Return the base 2 logarithm of x.  See log.c and __log1p.h for most
- * comments.
+ * Return the base 2 logarithm of x.  See log.c for most comments.
  *
- * This reduces x to {k, 1+f} exactly as in e_log.c, then calls the kernel,
- * then does the combining and scaling steps
- *    log2(x) = (f - 0.5*f*f + k_log1p(f)) / ln2 + k
- * in not-quite-routine extra precision.
+ * Reduce x to 2^k (1+f) and calculate r = log(1+f) - f + f*f/2
+ * as in log.c, then combine and scale in extra precision:
+ *    log2(x) = (f - f*f/2 + r)/log(2) + k
  */
 
-#include "libm.h"
-#include "__log1p.h"
+#include <math.h>
+#include <stdint.h>
 
 static const double
-two54   = 1.80143985094819840000e+16, /* 0x43500000, 0x00000000 */
 ivln2hi = 1.44269504072144627571e+00, /* 0x3ff71547, 0x65200000 */
-ivln2lo = 1.67517131648865118353e-10; /* 0x3de705fc, 0x2eefa200 */
+ivln2lo = 1.67517131648865118353e-10, /* 0x3de705fc, 0x2eefa200 */
+Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
+Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
+Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
+Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
+Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
+Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
+Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
 
 double log2(double x)
 {
-	double f,hfsq,hi,lo,r,val_hi,val_lo,w,y;
-	int32_t i,k,hx;
-	uint32_t lx;
-
-	EXTRACT_WORDS(hx, lx, x);
+	union {double f; uint64_t i;} u = {x};
+	double_t hfsq,f,s,z,R,w,t1,t2,y,hi,lo,val_hi,val_lo;
+	uint32_t hx;
+	int k;
 
+	hx = u.i>>32;
 	k = 0;
-	if (hx < 0x00100000) {  /* x < 2**-1022  */
-		if (((hx&0x7fffffff)|lx) == 0)
-			return -two54/0.0;  /* log(+-0)=-inf */
-		if (hx < 0)
-			return (x-x)/0.0;   /* log(-#) = NaN */
-		/* subnormal number, scale up x */
+	if (hx < 0x00100000 || hx>>31) {
+		if (u.i<<1 == 0)
+			return -1/(x*x);  /* log(+-0)=-inf */
+		if (hx>>31)
+			return (x-x)/0.0; /* log(-#) = NaN */
+		/* subnormal number, scale x up */
 		k -= 54;
-		x *= two54;
-		GET_HIGH_WORD(hx, x);
-	}
-	if (hx >= 0x7ff00000)
-		return x+x;
-	if (hx == 0x3ff00000 && lx == 0)
-		return 0.0;  /* log(1) = +0 */
-	k += (hx>>20) - 1023;
-	hx &= 0x000fffff;
-	i = (hx+0x95f64) & 0x100000;
-	SET_HIGH_WORD(x, hx|(i^0x3ff00000));  /* normalize x or x/2 */
-	k += i>>20;
-	y = (double)k;
+		x *= 0x1p54;
+		u.f = x;
+		hx = u.i>>32;
+	} else if (hx >= 0x7ff00000) {
+		return x;
+	} else if (hx == 0x3ff00000 && u.i<<32 == 0)
+		return 0;
+
+	/* reduce x into [sqrt(2)/2, sqrt(2)] */
+	hx += 0x3ff00000 - 0x3fe6a09e;
+	k += (int)(hx>>20) - 0x3ff;
+	hx = (hx&0x000fffff) + 0x3fe6a09e;
+	u.i = (uint64_t)hx<<32 | (u.i&0xffffffff);
+	x = u.f;
+
 	f = x - 1.0;
 	hfsq = 0.5*f*f;
-	r = __log1p(f);
+	s = f/(2.0+f);
+	z = s*s;
+	w = z*z;
+	t1 = w*(Lg2+w*(Lg4+w*Lg6));
+	t2 = z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7)));
+	R = t2 + t1;
 
 	/*
 	 * f-hfsq must (for args near 1) be evaluated in extra precision
@@ -90,13 +101,19 @@ double log2(double x)
 	 * The multi-precision calculations for the multiplications are
 	 * routine.
 	 */
+
+	/* hi+lo = f - hfsq + s*(hfsq+R) ~ log(1+f) */
 	hi = f - hfsq;
-	SET_LOW_WORD(hi, 0);
-	lo = (f - hi) - hfsq + r;
+	u.f = hi;
+	u.i &= (uint64_t)-1<<32;
+	hi = u.f;
+	lo = f - hi - hfsq + s*(hfsq+R);
+
 	val_hi = hi*ivln2hi;
 	val_lo = (lo+hi)*ivln2lo + lo*ivln2hi;
 
 	/* spadd(val_hi, val_lo, y), except for not using double_t: */
+	y = k;
 	w = y + val_hi;
 	val_lo += (y - w) + val_hi;
 	val_hi = w;
diff --git a/src/math/log2f.c b/src/math/log2f.c
index e0d6a9e4..b3e305fe 100644
--- a/src/math/log2f.c
+++ b/src/math/log2f.c
@@ -13,67 +13,62 @@
  * See comments in log2.c.
  */
 
-#include "libm.h"
-#include "__log1pf.h"
+#include <math.h>
+#include <stdint.h>
 
 static const float
-two25   =  3.3554432000e+07, /* 0x4c000000 */
 ivln2hi =  1.4428710938e+00, /* 0x3fb8b000 */
-ivln2lo = -1.7605285393e-04; /* 0xb9389ad4 */
+ivln2lo = -1.7605285393e-04, /* 0xb9389ad4 */
+/* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
+Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
+Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
+Lg3 = 0x91e9ee.0p-25, /* 0.28498786688 */
+Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
 
 float log2f(float x)
 {
-	float f,hfsq,hi,lo,r,y;
-	int32_t i,k,hx;
-
-	GET_FLOAT_WORD(hx, x);
+	union {float f; uint32_t i;} u = {x};
+	float_t hfsq,f,s,z,R,w,t1,t2,hi,lo;
+	uint32_t ix;
+	int k;
 
+	ix = u.i;
 	k = 0;
-	if (hx < 0x00800000) {  /* x < 2**-126  */
-		if ((hx&0x7fffffff) == 0)
-			return -two25/0.0f;  /* log(+-0)=-inf */
-		if (hx < 0)
-			return (x-x)/0.0f;   /* log(-#) = NaN */
+	if (ix < 0x00800000 || ix>>31) {  /* x < 2**-126  */
+		if (ix<<1 == 0)
+			return -1/(x*x);  /* log(+-0)=-inf */
+		if (ix>>31)
+			return (x-x)/0.0f; /* log(-#) = NaN */
 		/* subnormal number, scale up x */
 		k -= 25;
-		x *= two25;
-		GET_FLOAT_WORD(hx, x);
-	}
-	if (hx >= 0x7f800000)
-		return x+x;
-	if (hx == 0x3f800000)
-		return 0.0f;  /* log(1) = +0 */
-	k += (hx>>23) - 127;
-	hx &= 0x007fffff;
-	i = (hx+(0x4afb0d))&0x800000;
-	SET_FLOAT_WORD(x, hx|(i^0x3f800000));  /* normalize x or x/2 */
-	k += i>>23;
-	y = (float)k;
-	f = x - 1.0f;
-	hfsq = 0.5f * f * f;
-	r = __log1pf(f);
+		x *= 0x1p25f;
+		u.f = x;
+		ix = u.i;
+	} else if (ix >= 0x7f800000) {
+		return x;
+	} else if (ix == 0x3f800000)
+		return 0;
 
-	/*
-	 * We no longer need to avoid falling into the multi-precision
-	 * calculations due to compiler bugs breaking Dekker's theorem.
-	 * Keep avoiding this as an optimization.  See log2.c for more
-	 * details (some details are here only because the optimization
-	 * is not yet available in double precision).
-	 *
-	 * Another compiler bug turned up.  With gcc on i386,
-	 * (ivln2lo + ivln2hi) would be evaluated in float precision
-	 * despite runtime evaluations using double precision.  So we
-	 * must cast one of its terms to float_t.  This makes the whole
-	 * expression have type float_t, so return is forced to waste
-	 * time clobbering its extra precision.
-	 */
-// FIXME
-//      if (sizeof(float_t) > sizeof(float))
-//              return (r - hfsq + f) * ((float_t)ivln2lo + ivln2hi) + y;
+	/* reduce x into [sqrt(2)/2, sqrt(2)] */
+	ix += 0x3f800000 - 0x3f3504f3;
+	k += (int)(ix>>23) - 0x7f;
+	ix = (ix&0x007fffff) + 0x3f3504f3;
+	u.i = ix;
+	x = u.f;
+
+	f = x - 1.0f;
+	s = f/(2.0f + f);
+	z = s*s;
+	w = z*z;
+	t1= w*(Lg2+w*Lg4);
+	t2= z*(Lg1+w*Lg3);
+	R = t2 + t1;
+	hfsq = 0.5f*f*f;
 
 	hi = f - hfsq;
-	GET_FLOAT_WORD(hx,hi);
-	SET_FLOAT_WORD(hi,hx&0xfffff000);
-	lo = (f - hi) - hfsq + r;
-	return (lo+hi)*ivln2lo + lo*ivln2hi + hi*ivln2hi + y;
+	u.f = hi;
+	u.i &= 0xfffff000;
+	hi = u.f;
+	lo = f - hi - hfsq + s*(hfsq+R);
+	return (lo+hi)*ivln2lo + lo*ivln2hi + hi*ivln2hi + k;
 }
diff --git a/src/math/log2l.c b/src/math/log2l.c
index 345b395d..d00531d5 100644
--- a/src/math/log2l.c
+++ b/src/math/log2l.c
@@ -117,7 +117,7 @@ long double log2l(long double x)
 		return x;
 	if (x <= 0.0) {
 		if (x == 0.0)
-			return -1/(x+0); /* -inf with divbyzero */
+			return -1/(x*x); /* -inf with divbyzero */
 		return 0/0.0f; /* nan with invalid */
 	}
 
diff --git a/src/math/logf.c b/src/math/logf.c
index c7f7dbe6..52230a1b 100644
--- a/src/math/logf.c
+++ b/src/math/logf.c
@@ -13,12 +13,12 @@
  * ====================================================
  */
 
-#include "libm.h"
+#include <math.h>
+#include <stdint.h>
 
 static const float
 ln2_hi = 6.9313812256e-01, /* 0x3f317180 */
 ln2_lo = 9.0580006145e-06, /* 0x3717f7d1 */
-two25  = 3.355443200e+07,  /* 0x4c000000 */
 /* |(log(1+s)-log(1-s))/s - Lg(s)| < 2**-34.24 (~[-4.95e-11, 4.97e-11]). */
 Lg1 = 0xaaaaaa.0p-24, /* 0.66666662693 */
 Lg2 = 0xccce13.0p-25, /* 0.40000972152 */
@@ -27,61 +27,43 @@ Lg4 = 0xf89e26.0p-26; /* 0.24279078841 */
 
 float logf(float x)
 {
-	float hfsq,f,s,z,R,w,t1,t2,dk;
-	int32_t k,ix,i,j;
-
-	GET_FLOAT_WORD(ix, x);
+	union {float f; uint32_t i;} u = {x};
+	float_t hfsq,f,s,z,R,w,t1,t2,dk;
+	uint32_t ix;
+	int k;
 
+	ix = u.i;
 	k = 0;
-	if (ix < 0x00800000) {  /* x < 2**-126  */
-		if ((ix & 0x7fffffff) == 0)
-			return -two25/0.0f;  /* log(+-0)=-inf */
-		if (ix < 0)
-			return (x-x)/0.0f;   /* log(-#) = NaN */
+	if (ix < 0x00800000 || ix>>31) {  /* x < 2**-126  */
+		if (ix<<1 == 0)
+			return -1/(x*x);  /* log(+-0)=-inf */
+		if (ix>>31)
+			return (x-x)/0.0f; /* log(-#) = NaN */
 		/* subnormal number, scale up x */
 		k -= 25;
-		x *= two25;
-		GET_FLOAT_WORD(ix, x);
-	}
-	if (ix >= 0x7f800000)
-		return x+x;
-	k += (ix>>23) - 127;
-	ix &= 0x007fffff;
-	i = (ix + (0x95f64<<3)) & 0x800000;
-	SET_FLOAT_WORD(x, ix|(i^0x3f800000));  /* normalize x or x/2 */
-	k += i>>23;
+		x *= 0x1p25f;
+		u.f = x;
+		ix = u.i;
+	} else if (ix >= 0x7f800000) {
+		return x;
+	} else if (ix == 0x3f800000)
+		return 0;
+
+	/* reduce x into [sqrt(2)/2, sqrt(2)] */
+	ix += 0x3f800000 - 0x3f3504f3;
+	k += (int)(ix>>23) - 0x7f;
+	ix = (ix&0x007fffff) + 0x3f3504f3;
+	u.i = ix;
+	x = u.f;
+
 	f = x - 1.0f;
-	if ((0x007fffff & (0x8000 + ix)) < 0xc000) {  /* -2**-9 <= f < 2**-9 */
-		if (f == 0.0f) {
-			if (k == 0)
-				return 0.0f;
-			dk = (float)k;
-			return dk*ln2_hi + dk*ln2_lo;
-		}
-		R = f*f*(0.5f - 0.33333333333333333f*f);
-		if (k == 0)
-			return f-R;
-		dk = (float)k;
-		return dk*ln2_hi - ((R-dk*ln2_lo)-f);
-	}
 	s = f/(2.0f + f);
-	dk = (float)k;
 	z = s*s;
-	i = ix-(0x6147a<<3);
 	w = z*z;
-	j = (0x6b851<<3)-ix;
 	t1= w*(Lg2+w*Lg4);
 	t2= z*(Lg1+w*Lg3);
-	i |= j;
 	R = t2 + t1;
-	if (i > 0) {
-		hfsq = 0.5f * f * f;
-		if (k == 0)
-			return f - (hfsq-s*(hfsq+R));
-		return dk*ln2_hi - ((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
-	} else {
-		if (k == 0)
-			return f - s*(f-R);
-		return dk*ln2_hi - ((s*(f-R)-dk*ln2_lo)-f);
-	}
+	hfsq = 0.5f*f*f;
+	dk = k;
+	return s*(hfsq+R) + dk*ln2_lo - hfsq + f + dk*ln2_hi;
 }
diff --git a/src/math/logl.c b/src/math/logl.c
index ef2b5515..03c5188f 100644
--- a/src/math/logl.c
+++ b/src/math/logl.c
@@ -35,9 +35,9 @@
  *
  *     log(1+x) = x - 0.5 x**2 + x**3 P(x)/Q(x).
  *
- * Otherwise, setting  z = 2(x-1)/x+1),
+ * Otherwise, setting  z = 2(x-1)/(x+1),
  *
- *     log(x) = z + z**3 P(z)/Q(z).
+ *     log(x) = log(1+z/2) - log(1-z/2) = z + z**3 P(z)/Q(z).
  *
  *
  * ACCURACY:
@@ -116,7 +116,7 @@ long double logl(long double x)
 		return x;
 	if (x <= 0.0) {
 		if (x == 0.0)
-			return -1/(x+0); /* -inf with divbyzero */
+			return -1/(x*x); /* -inf with divbyzero */
 		return 0/0.0f; /* nan with invalid */
 	}
 
@@ -127,7 +127,7 @@ long double logl(long double x)
 	x = frexpl(x, &e);
 
 	/* logarithm using log(x) = z + z**3 P(z)/Q(z),
-	 * where z = 2(x-1)/x+1)
+	 * where z = 2(x-1)/(x+1)
 	 */
 	if (e > 2 || e < -2) {
 		if (x < SQRTH) {  /* 2(2x-1)/(2x+1) */