about summary refs log tree commit diff
path: root/src/math
diff options
context:
space:
mode:
Diffstat (limited to 'src/math')
-rw-r--r--src/math/tgamma.c223
-rw-r--r--src/math/tgammaf.c12
2 files changed, 215 insertions, 20 deletions
diff --git a/src/math/tgamma.c b/src/math/tgamma.c
index f3bbe370..a3f203c1 100644
--- a/src/math/tgamma.c
+++ b/src/math/tgamma.c
@@ -1,16 +1,221 @@
-#include <math.h>
+/*
+"A Precision Approximation of the Gamma Function" - Cornelius Lanczos (1964)
+"Lanczos Implementation of the Gamma Function" - Paul Godfrey (2001)
+"An Analysis of the Lanczos Gamma Approximation" - Glendon Ralph Pugh (2004)
 
-// FIXME: use lanczos approximation
+approximation method:
 
-double __lgamma_r(double, int *);
+                        (x - 0.5)         S(x)
+Gamma(x) = (x + g - 0.5)         *  ----------------
+                                    exp(x + g - 0.5)
+
+with
+                 a1      a2      a3            aN
+S(x) ~= [ a0 + ----- + ----- + ----- + ... + ----- ]
+               x + 1   x + 2   x + 3         x + N
+
+with a0, a1, a2, a3,.. aN constants which depend on g.
+
+for x < 0 the following reflection formula is used:
+
+Gamma(x)*Gamma(-x) = -pi/(x sin(pi x))
+
+most ideas and constants are from boost and python
+*/
+#include "libm.h"
+
+static const double pi = 3.141592653589793238462643383279502884;
+
+/* sin(pi x) with x > 0 && isnormal(x) assumption */
+static double sinpi(double x)
+{
+	int n;
+
+	/* argument reduction: x = |x| mod 2 */
+	/* spurious inexact when x is odd int */
+	x = x * 0.5;
+	x = 2 * (x - floor(x));
+
+	/* reduce x into [-.25,.25] */
+	n = 4 * x;
+	n = (n+1)/2;
+	x -= n * 0.5;
+
+	x *= pi;
+	switch (n) {
+	default: /* case 4 */
+	case 0:
+		return __sin(x, 0, 0);
+	case 1:
+		return __cos(x, 0);
+	case 2:
+		/* sin(0-x) and -sin(x) have different sign at 0 */
+		return __sin(0-x, 0, 0);
+	case 3:
+		return -__cos(x, 0);
+	}
+}
+
+#define N 12
+//static const double g = 6.024680040776729583740234375;
+static const double gmhalf = 5.524680040776729583740234375;
+static const double Snum[N+1] = {
+	23531376880.410759688572007674451636754734846804940,
+	42919803642.649098768957899047001988850926355848959,
+	35711959237.355668049440185451547166705960488635843,
+	17921034426.037209699919755754458931112671403265390,
+	6039542586.3520280050642916443072979210699388420708,
+	1439720407.3117216736632230727949123939715485786772,
+	248874557.86205415651146038641322942321632125127801,
+	31426415.585400194380614231628318205362874684987640,
+	2876370.6289353724412254090516208496135991145378768,
+	186056.26539522349504029498971604569928220784236328,
+	8071.6720023658162106380029022722506138218516325024,
+	210.82427775157934587250973392071336271166969580291,
+	2.5066282746310002701649081771338373386264310793408,
+};
+static const double Sden[N+1] = {
+	0, 39916800, 120543840, 150917976, 105258076, 45995730, 13339535,
+	2637558, 357423, 32670, 1925, 66, 1,
+};
+/* n! for small integer n */
+static const double fact[] = {
+	1, 1, 2, 6, 24, 120, 720, 5040.0, 40320.0, 362880.0, 3628800.0, 39916800.0,
+	479001600.0, 6227020800.0, 87178291200.0, 1307674368000.0, 20922789888000.0,
+	355687428096000.0, 6402373705728000.0, 121645100408832000.0,
+	2432902008176640000.0, 51090942171709440000.0, 1124000727777607680000.0,
+};
+
+/* S(x) rational function for positive x */
+static double S(double x)
+{
+	double num = 0, den = 0;
+	int i;
+
+	/* to avoid overflow handle large x differently */
+	if (x < 8)
+		for (i = N; i >= 0; i--) {
+			num = num * x + Snum[i];
+			den = den * x + Sden[i];
+		}
+	else
+		for (i = 0; i <= N; i++) {
+			num = num / x + Snum[i];
+			den = den / x + Sden[i];
+		}
+	return num/den;
+}
 
 double tgamma(double x)
 {
-	int sign;
-	double y;
+	double absx, y, dy, z, r;
 
-	y = exp(__lgamma_r(x, &sign));
-	if (sign < 0)
-		y = -y;
-	return y;
+	/* special cases */
+	if (!isfinite(x))
+		/* tgamma(nan)=nan, tgamma(inf)=inf, tgamma(-inf)=nan with invalid */
+		return x + INFINITY;
+
+	/* integer arguments */
+	/* raise inexact when non-integer */
+	if (x == floor(x)) {
+		if (x == 0)
+			/* tgamma(+-0)=+-inf with divide-by-zero */
+			return 1/x;
+		if (x < 0)
+			return 0/0.0;
+		if (x <= sizeof fact/sizeof *fact)
+			return fact[(int)x - 1];
+	}
+
+	absx = fabs(x);
+
+	/* x ~ 0: tgamma(x) ~ 1/x */
+	if (absx < 0x1p-54)
+		return 1/x;
+
+	/* x >= 172: tgamma(x)=inf with overflow */
+	/* x =< -184: tgamma(x)=+-0 with underflow */
+	if (absx >= 184) {
+		if (x < 0) {
+			if (floor(x) * 0.5 == floor(x * 0.5))
+				return 0;
+			return -0.0;
+		}
+		x *= 0x1p1023;
+		return x;
+	}
+
+	/* handle the error of x + g - 0.5 */
+	y = absx + gmhalf;
+	if (absx > gmhalf) {
+		dy = y - absx;
+		dy -= gmhalf;
+	} else {
+		dy = y - gmhalf;
+		dy -= absx;
+	}
+
+	z = absx - 0.5;
+	r = S(absx) * exp(-y);
+	if (x < 0) {
+		/* reflection formula for negative x */
+		r = -pi / (sinpi(absx) * absx * r);
+		dy = -dy;
+		z = -z;
+	}
+	r += dy * (gmhalf+0.5) * r / y;
+	z = pow(y, 0.5*z);
+	r = r * z * z;
+	return r;
 }
+
+#if 0
+double __lgamma_r(double x, int *sign)
+{
+	double r, absx, z, zz, w;
+
+	*sign = 1;
+
+	/* special cases */
+	if (!isfinite(x))
+		/* lgamma(nan)=nan, lgamma(+-inf)=inf */
+		return x*x;
+
+	/* integer arguments */
+	if (x == floor(x) && x <= 2) {
+		/* n <= 0: lgamma(n)=inf with divbyzero */
+		/* n == 1,2: lgamma(n)=0 */
+		if (x <= 0)
+			return 1/0.0;
+		return 0;
+	}
+
+	absx = fabs(x);
+
+	/* lgamma(x) ~ -log(|x|) for tiny |x| */
+	if (absx < 0x1p-54) {
+		*sign = 1 - 2*!!signbit(x);
+		return -log(absx);
+	}
+
+	/* use tgamma for smaller |x| */
+	if (absx < 128) {
+		x = tgamma(x);
+		*sign = 1 - 2*!!signbit(x);
+		return log(fabs(x));
+	}
+
+	/* second term (log(S)-g) could be more precise here.. */
+	/* or with stirling: (|x|-0.5)*(log(|x|)-1) + poly(1/|x|) */
+	r = (absx-0.5)*(log(absx+gmhalf)-1) + (log(S(absx)) - (gmhalf+0.5));
+	if (x < 0) {
+		/* reflection formula for negative x */
+		x = sinpi(absx);
+		*sign = 2*!!signbit(x) - 1;
+		r = log(pi/(fabs(x)*absx)) - r;
+	}
+	return r;
+}
+
+weak_alias(__lgamma_r, lgamma_r);
+#endif
diff --git a/src/math/tgammaf.c b/src/math/tgammaf.c
index 16df8076..b4ca51c9 100644
--- a/src/math/tgammaf.c
+++ b/src/math/tgammaf.c
@@ -1,16 +1,6 @@
 #include <math.h>
 
-// FIXME: use lanczos approximation
-
-float __lgammaf_r(float, int *);
-
 float tgammaf(float x)
 {
-	int sign;
-	float y;
-
-	y = exp(__lgammaf_r(x, &sign));
-	if (sign < 0)
-		y = -y;
-	return y;
+	return tgamma(x);
 }