about summary refs log tree commit diff
path: root/src/math/jnf.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/math/jnf.c')
-rw-r--r--src/math/jnf.c213
1 files changed, 213 insertions, 0 deletions
diff --git a/src/math/jnf.c b/src/math/jnf.c
new file mode 100644
index 00000000..7db93ae7
--- /dev/null
+++ b/src/math/jnf.c
@@ -0,0 +1,213 @@
+/* origin: FreeBSD /usr/src/lib/msun/src/e_jnf.c */
+/*
+ * Conversion to float by Ian Lance Taylor, Cygnus Support, ian@cygnus.com.
+ */
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+#include "libm.h"
+
+static const float
+two = 2.0000000000e+00, /* 0x40000000 */
+one = 1.0000000000e+00; /* 0x3F800000 */
+
+static const float zero = 0.0000000000e+00;
+
+float jnf(int n, float x)
+{
+	int32_t i,hx,ix, sgn;
+	float a, b, temp, di;
+	float z, w;
+
+	/* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x)
+	 * Thus, J(-n,x) = J(n,-x)
+	 */
+	GET_FLOAT_WORD(hx, x);
+	ix = 0x7fffffff & hx;
+	/* if J(n,NaN) is NaN */
+	if (ix > 0x7f800000)
+		return x+x;
+	if (n < 0) {
+		n = -n;
+		x = -x;
+		hx ^= 0x80000000;
+	}
+	if (n == 0) return j0f(x);
+	if (n == 1) return j1f(x);
+
+	sgn = (n&1)&(hx>>31);  /* even n -- 0, odd n -- sign(x) */
+	x = fabsf(x);
+	if (ix == 0 || ix >= 0x7f800000)  /* if x is 0 or inf */
+		b = zero;
+	else if((float)n <= x) {
+		/* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */
+		a = j0f(x);
+		b = j1f(x);
+		for (i=1; i<n; i++){
+			temp = b;
+			b = b*((float)(i+i)/x) - a; /* avoid underflow */
+			a = temp;
+		}
+	} else {
+		if (ix < 0x30800000) { /* x < 2**-29 */
+			/* x is tiny, return the first Taylor expansion of J(n,x)
+			 * J(n,x) = 1/n!*(x/2)^n  - ...
+			 */
+			if (n > 33)  /* underflow */
+				b = zero;
+			else {
+				temp = x*(float)0.5;
+				b = temp;
+				for (a=one,i=2; i<=n; i++) {
+					a *= (float)i;    /* a = n! */
+					b *= temp;        /* b = (x/2)^n */
+				}
+				b = b/a;
+			}
+		} else {
+			/* use backward recurrence */
+			/*                      x      x^2      x^2
+			 *  J(n,x)/J(n-1,x) =  ----   ------   ------   .....
+			 *                      2n  - 2(n+1) - 2(n+2)
+			 *
+			 *                      1      1        1
+			 *  (for large x)   =  ----  ------   ------   .....
+			 *                      2n   2(n+1)   2(n+2)
+			 *                      -- - ------ - ------ -
+			 *                       x     x         x
+			 *
+			 * Let w = 2n/x and h=2/x, then the above quotient
+			 * is equal to the continued fraction:
+			 *                  1
+			 *      = -----------------------
+			 *                     1
+			 *         w - -----------------
+			 *                        1
+			 *              w+h - ---------
+			 *                     w+2h - ...
+			 *
+			 * To determine how many terms needed, let
+			 * Q(0) = w, Q(1) = w(w+h) - 1,
+			 * Q(k) = (w+k*h)*Q(k-1) - Q(k-2),
+			 * When Q(k) > 1e4      good for single
+			 * When Q(k) > 1e9      good for double
+			 * When Q(k) > 1e17     good for quadruple
+			 */
+			/* determine k */
+			float t,v;
+			float q0,q1,h,tmp;
+			int32_t k,m;
+
+			w = (n+n)/(float)x;
+			h = (float)2.0/(float)x;
+			z = w+h;
+			q0 = w;
+			q1 = w*z - (float)1.0;
+			k = 1;
+			while (q1 < (float)1.0e9) {
+				k += 1;
+				z += h;
+				tmp = z*q1 - q0;
+				q0 = q1;
+				q1 = tmp;
+			}
+			m = n+n;
+			for (t=zero, i = 2*(n+k); i>=m; i -= 2)
+				t = one/(i/x-t);
+			a = t;
+			b = one;
+			/*  estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n)
+			 *  Hence, if n*(log(2n/x)) > ...
+			 *  single 8.8722839355e+01
+			 *  double 7.09782712893383973096e+02
+			 *  long double 1.1356523406294143949491931077970765006170e+04
+			 *  then recurrent value may overflow and the result is
+			 *  likely underflow to zero
+			 */
+			tmp = n;
+			v = two/x;
+			tmp = tmp*logf(fabsf(v*tmp));
+			if (tmp < (float)8.8721679688e+01) {
+				for (i=n-1,di=(float)(i+i); i>0; i--) {
+					temp = b;
+					b *= di;
+					b = b/x - a;
+					a = temp;
+					di -= two;
+				}
+			} else {
+				for (i=n-1,di=(float)(i+i); i>0; i--){
+					temp = b;
+					b *= di;
+					b = b/x - a;
+					a = temp;
+					di -= two;
+					/* scale b to avoid spurious overflow */
+					if (b > (float)1e10) {
+						a /= b;
+						t /= b;
+						b = one;
+					}
+				}
+			}
+			z = j0f(x);
+			w = j1f(x);
+			if (fabsf(z) >= fabsf(w))
+				b = t*z/b;
+			else
+				b = t*w/a;
+		}
+	}
+	if (sgn == 1) return -b;
+	return b;
+}
+
+float ynf(int n, float x)
+{
+	int32_t i,hx,ix,ib;
+	int32_t sign;
+	float a, b, temp;
+
+	GET_FLOAT_WORD(hx, x);
+	ix = 0x7fffffff & hx;
+	/* if Y(n,NaN) is NaN */
+	if (ix > 0x7f800000)
+		return x+x;
+	if (ix == 0)
+		return -one/zero;
+	if (hx < 0)
+		return zero/zero;
+	sign = 1;
+	if (n < 0) {
+		n = -n;
+		sign = 1 - ((n&1)<<1);
+	}
+	if (n == 0)
+		return y0f(x);
+	if (n == 1)
+		return sign*y1f(x);
+	if (ix == 0x7f800000)
+		return zero;
+
+	a = y0f(x);
+	b = y1f(x);
+	/* quit if b is -inf */
+	GET_FLOAT_WORD(ib,b);
+	for (i = 1; i < n && ib != 0xff800000; i++){
+		temp = b;
+		b = ((float)(i+i)/x)*b - a;
+		GET_FLOAT_WORD(ib, b);
+		a = temp;
+	}
+	if (sign > 0)
+		return b;
+	return -b;
+}