diff options
Diffstat (limited to 'src/math/jn.c')
-rw-r--r-- | src/math/jn.c | 282 |
1 files changed, 282 insertions, 0 deletions
diff --git a/src/math/jn.c b/src/math/jn.c new file mode 100644 index 00000000..082a17bc --- /dev/null +++ b/src/math/jn.c @@ -0,0 +1,282 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/e_jn.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* + * jn(n, x), yn(n, x) + * floating point Bessel's function of the 1st and 2nd kind + * of order n + * + * Special cases: + * y0(0)=y1(0)=yn(n,0) = -inf with division by zero signal; + * y0(-ve)=y1(-ve)=yn(n,-ve) are NaN with invalid signal. + * Note 2. About jn(n,x), yn(n,x) + * For n=0, j0(x) is called, + * for n=1, j1(x) is called, + * for n<x, forward recursion us used starting + * from values of j0(x) and j1(x). + * for n>x, a continued fraction approximation to + * j(n,x)/j(n-1,x) is evaluated and then backward + * recursion is used starting from a supposed value + * for j(n,x). The resulting value of j(0,x) is + * compared with the actual value to correct the + * supposed value of j(n,x). + * + * yn(n,x) is similar in all respects, except + * that forward recursion is used for all + * values of n>1. + * + */ + +#include "libm.h" + +static const double +invsqrtpi = 5.64189583547756279280e-01, /* 0x3FE20DD7, 0x50429B6D */ +two = 2.00000000000000000000e+00, /* 0x40000000, 0x00000000 */ +one = 1.00000000000000000000e+00; /* 0x3FF00000, 0x00000000 */ + +static const double zero = 0.00000000000000000000e+00; + +double jn(int n, double x) +{ + int32_t i,hx,ix,lx,sgn; + double a, b, temp, di; + double z, w; + + /* J(-n,x) = (-1)^n * J(n, x), J(n, -x) = (-1)^n * J(n, x) + * Thus, J(-n,x) = J(n,-x) + */ + EXTRACT_WORDS(hx, lx, x); + ix = 0x7fffffff & hx; + /* if J(n,NaN) is NaN */ + if ((ix|((uint32_t)(lx|-lx))>>31) > 0x7ff00000) + return x+x; + if (n < 0) { + n = -n; + x = -x; + hx ^= 0x80000000; + } + if (n == 0) return j0(x); + if (n == 1) return j1(x); + + sgn = (n&1)&(hx>>31); /* even n -- 0, odd n -- sign(x) */ + x = fabs(x); + if ((ix|lx) == 0 || ix >= 0x7ff00000) /* if x is 0 or inf */ + b = zero; + else if ((double)n <= x) { + /* Safe to use J(n+1,x)=2n/x *J(n,x)-J(n-1,x) */ + if (ix >= 0x52D00000) { /* x > 2**302 */ + /* (x >> n**2) + * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) + * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) + * Let s=sin(x), c=cos(x), + * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then + * + * n sin(xn)*sqt2 cos(xn)*sqt2 + * ---------------------------------- + * 0 s-c c+s + * 1 -s-c -c+s + * 2 -s+c -c-s + * 3 s+c c-s + */ + switch(n&3) { + case 0: temp = cos(x)+sin(x); break; + case 1: temp = -cos(x)+sin(x); break; + case 2: temp = -cos(x)-sin(x); break; + case 3: temp = cos(x)-sin(x); break; + } + b = invsqrtpi*temp/sqrt(x); + } else { + a = j0(x); + b = j1(x); + for (i=1; i<n; i++){ + temp = b; + b = b*((double)(i+i)/x) - a; /* avoid underflow */ + a = temp; + } + } + } else { + if (ix < 0x3e100000) { /* x < 2**-29 */ + /* x is tiny, return the first Taylor expansion of J(n,x) + * J(n,x) = 1/n!*(x/2)^n - ... + */ + if (n > 33) /* underflow */ + b = zero; + else { + temp = x*0.5; + b = temp; + for (a=one,i=2; i<=n; i++) { + a *= (double)i; /* a = n! */ + b *= temp; /* b = (x/2)^n */ + } + b = b/a; + } + } else { + /* use backward recurrence */ + /* x x^2 x^2 + * J(n,x)/J(n-1,x) = ---- ------ ------ ..... + * 2n - 2(n+1) - 2(n+2) + * + * 1 1 1 + * (for large x) = ---- ------ ------ ..... + * 2n 2(n+1) 2(n+2) + * -- - ------ - ------ - + * x x x + * + * Let w = 2n/x and h=2/x, then the above quotient + * is equal to the continued fraction: + * 1 + * = ----------------------- + * 1 + * w - ----------------- + * 1 + * w+h - --------- + * w+2h - ... + * + * To determine how many terms needed, let + * Q(0) = w, Q(1) = w(w+h) - 1, + * Q(k) = (w+k*h)*Q(k-1) - Q(k-2), + * When Q(k) > 1e4 good for single + * When Q(k) > 1e9 good for double + * When Q(k) > 1e17 good for quadruple + */ + /* determine k */ + double t,v; + double q0,q1,h,tmp; + int32_t k,m; + + w = (n+n)/(double)x; h = 2.0/(double)x; + q0 = w; + z = w+h; + q1 = w*z - 1.0; + k = 1; + while (q1 < 1.0e9) { + k += 1; + z += h; + tmp = z*q1 - q0; + q0 = q1; + q1 = tmp; + } + m = n+n; + for (t=zero, i = 2*(n+k); i>=m; i -= 2) + t = one/(i/x-t); + a = t; + b = one; + /* estimate log((2/x)^n*n!) = n*log(2/x)+n*ln(n) + * Hence, if n*(log(2n/x)) > ... + * single 8.8722839355e+01 + * double 7.09782712893383973096e+02 + * long double 1.1356523406294143949491931077970765006170e+04 + * then recurrent value may overflow and the result is + * likely underflow to zero + */ + tmp = n; + v = two/x; + tmp = tmp*log(fabs(v*tmp)); + if (tmp < 7.09782712893383973096e+02) { + for (i=n-1,di=(double)(i+i); i>0; i--) { + temp = b; + b *= di; + b = b/x - a; + a = temp; + di -= two; + } + } else { + for (i=n-1,di=(double)(i+i); i>0; i--) { + temp = b; + b *= di; + b = b/x - a; + a = temp; + di -= two; + /* scale b to avoid spurious overflow */ + if (b > 1e100) { + a /= b; + t /= b; + b = one; + } + } + } + z = j0(x); + w = j1(x); + if (fabs(z) >= fabs(w)) + b = t*z/b; + else + b = t*w/a; + } + } + if (sgn==1) return -b; + return b; +} + + + +double yn(int n, double x) +{ + int32_t i,hx,ix,lx; + int32_t sign; + double a, b, temp; + + EXTRACT_WORDS(hx, lx, x); + ix = 0x7fffffff & hx; + /* if Y(n,NaN) is NaN */ + if ((ix|((uint32_t)(lx|-lx))>>31) > 0x7ff00000) + return x+x; + if ((ix|lx) == 0) + return -one/zero; + if (hx < 0) + return zero/zero; + sign = 1; + if (n < 0) { + n = -n; + sign = 1 - ((n&1)<<1); + } + if (n == 0) + return y0(x); + if (n == 1) + return sign*y1(x); + if (ix == 0x7ff00000) + return zero; + if (ix >= 0x52D00000) { /* x > 2**302 */ + /* (x >> n**2) + * Jn(x) = cos(x-(2n+1)*pi/4)*sqrt(2/x*pi) + * Yn(x) = sin(x-(2n+1)*pi/4)*sqrt(2/x*pi) + * Let s=sin(x), c=cos(x), + * xn=x-(2n+1)*pi/4, sqt2 = sqrt(2),then + * + * n sin(xn)*sqt2 cos(xn)*sqt2 + * ---------------------------------- + * 0 s-c c+s + * 1 -s-c -c+s + * 2 -s+c -c-s + * 3 s+c c-s + */ + switch(n&3) { + case 0: temp = sin(x)-cos(x); break; + case 1: temp = -sin(x)-cos(x); break; + case 2: temp = -sin(x)+cos(x); break; + case 3: temp = sin(x)+cos(x); break; + } + b = invsqrtpi*temp/sqrt(x); + } else { + uint32_t high; + a = y0(x); + b = y1(x); + /* quit if b is -inf */ + GET_HIGH_WORD(high, b); + for (i=1; i<n && high!=0xfff00000; i++){ + temp = b; + b = ((double)(i+i)/x)*b - a; + GET_HIGH_WORD(high, b); + a = temp; + } + } + if (sign > 0) return b; + return -b; +} |