about summary refs log tree commit diff
path: root/src/math/fma.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/math/fma.c')
-rw-r--r--src/math/fma.c585
1 files changed, 154 insertions, 431 deletions
diff --git a/src/math/fma.c b/src/math/fma.c
index 741ccd75..0c6f90c9 100644
--- a/src/math/fma.c
+++ b/src/math/fma.c
@@ -1,460 +1,183 @@
-#include <fenv.h>
-#include "libm.h"
+#include <stdint.h>
+#include <float.h>
+#include <math.h>
+#include "atomic.h"
 
-#if LDBL_MANT_DIG==64 && LDBL_MAX_EXP==16384
-/* exact add, assumes exponent_x >= exponent_y */
-static void add(long double *hi, long double *lo, long double x, long double y)
-{
-	long double r;
-
-	r = x + y;
-	*hi = r;
-	r -= x;
-	*lo = y - r;
-}
-
-/* exact mul, assumes no over/underflow */
-static void mul(long double *hi, long double *lo, long double x, long double y)
-{
-	static const long double c = 1.0 + 0x1p32L;
-	long double cx, xh, xl, cy, yh, yl;
+#define ASUINT64(x) ((union {double f; uint64_t i;}){x}).i
+#define ZEROINFNAN (0x7ff-0x3ff-52-1)
 
-	cx = c*x;
-	xh = (x - cx) + cx;
-	xl = x - xh;
-	cy = c*y;
-	yh = (y - cy) + cy;
-	yl = y - yh;
-	*hi = x*y;
-	*lo = (xh*yh - *hi) + xh*yl + xl*yh + xl*yl;
-}
+struct num { uint64_t m; int e; int sign; };
 
-/*
-assume (long double)(hi+lo) == hi
-return an adjusted hi so that rounding it to double (or less) precision is correct
-*/
-static long double adjust(long double hi, long double lo)
+static struct num normalize(double x)
 {
-	union ldshape uhi, ulo;
-
-	if (lo == 0)
-		return hi;
-	uhi.f = hi;
-	if (uhi.i.m & 0x3ff)
-		return hi;
-	ulo.f = lo;
-	if ((uhi.i.se & 0x8000) == (ulo.i.se & 0x8000))
-		uhi.i.m++;
-	else {
-		/* handle underflow and take care of ld80 implicit msb */
-		if (uhi.i.m << 1 == 0) {
-			uhi.i.m = 0;
-			uhi.i.se--;
-		}
-		uhi.i.m--;
+	uint64_t ix = ASUINT64(x);
+	int e = ix>>52;
+	int sign = e & 0x800;
+	e &= 0x7ff;
+	if (!e) {
+		ix = ASUINT64(x*0x1p63);
+		e = ix>>52 & 0x7ff;
+		e = e ? e-63 : 0x800;
 	}
-	return uhi.f;
+	ix &= (1ull<<52)-1;
+	ix |= 1ull<<52;
+	ix <<= 1;
+	e -= 0x3ff + 52 + 1;
+	return (struct num){ix,e,sign};
 }
 
-/* adjusted add so the result is correct when rounded to double (or less) precision */
-static long double dadd(long double x, long double y)
+static void mul(uint64_t *hi, uint64_t *lo, uint64_t x, uint64_t y)
 {
-	add(&x, &y, x, y);
-	return adjust(x, y);
-}
-
-/* adjusted mul so the result is correct when rounded to double (or less) precision */
-static long double dmul(long double x, long double y)
-{
-	mul(&x, &y, x, y);
-	return adjust(x, y);
-}
-
-static int getexp(long double x)
-{
-	union ldshape u;
-	u.f = x;
-	return u.i.se & 0x7fff;
+	uint64_t t1,t2,t3;
+	uint64_t xlo = (uint32_t)x, xhi = x>>32;
+	uint64_t ylo = (uint32_t)y, yhi = y>>32;
+
+	t1 = xlo*ylo;
+	t2 = xlo*yhi + xhi*ylo;
+	t3 = xhi*yhi;
+	*lo = t1 + (t2<<32);
+	*hi = t3 + (t2>>32) + (t1 > *lo);
 }
 
 double fma(double x, double y, double z)
 {
 	#pragma STDC FENV_ACCESS ON
-	long double hi, lo1, lo2, xy;
-	int round, ez, exy;
 
-	/* handle +-inf,nan */
-	if (!isfinite(x) || !isfinite(y))
+	/* normalize so top 10bits and last bit are 0 */
+	struct num nx, ny, nz;
+	nx = normalize(x);
+	ny = normalize(y);
+	nz = normalize(z);
+
+	if (nx.e >= ZEROINFNAN || ny.e >= ZEROINFNAN)
 		return x*y + z;
-	if (!isfinite(z))
+	if (nz.e >= ZEROINFNAN) {
+		if (nz.e > ZEROINFNAN) /* z==0 */
+			return x*y + z;
 		return z;
-	/* handle +-0 */
-	if (x == 0.0 || y == 0.0)
-		return x*y + z;
-	round = fegetround();
-	if (z == 0.0) {
-		if (round == FE_TONEAREST)
-			return dmul(x, y);
-		return x*y;
 	}
 
-	/* exact mul and add require nearest rounding */
-	/* spurious inexact exceptions may be raised */
-	fesetround(FE_TONEAREST);
-	mul(&xy, &lo1, x, y);
-	exy = getexp(xy);
-	ez = getexp(z);
-	if (ez > exy) {
-		add(&hi, &lo2, z, xy);
-	} else if (ez > exy - 12) {
-		add(&hi, &lo2, xy, z);
-		if (hi == 0) {
-			/*
-			xy + z is 0, but it should be calculated with the
-			original rounding mode so the sign is correct, if the
-			compiler does not support FENV_ACCESS ON it does not
-			know about the changed rounding mode and eliminates
-			the xy + z below without the volatile memory access
-			*/
-			volatile double z_;
-			fesetround(round);
-			z_ = z;
-			return (xy + z_) + lo1;
+	/* mul: r = x*y */
+	uint64_t rhi, rlo, zhi, zlo;
+	mul(&rhi, &rlo, nx.m, ny.m);
+	/* either top 20 or 21 bits of rhi and last 2 bits of rlo are 0 */
+
+	/* align exponents */
+	int e = nx.e + ny.e;
+	int d = nz.e - e;
+	/* shift bits z<<=kz, r>>=kr, so kz+kr == d, set e = e+kr (== ez-kz) */
+	if (d > 0) {
+		if (d < 64) {
+			zlo = nz.m<<d;
+			zhi = nz.m>>64-d;
+		} else {
+			zlo = 0;
+			zhi = nz.m;
+			e = nz.e - 64;
+			d -= 64;
+			if (d == 0) {
+			} else if (d < 64) {
+				rlo = rhi<<64-d | rlo>>d | !!(rlo<<64-d);
+				rhi = rhi>>d;
+			} else {
+				rlo = 1;
+				rhi = 0;
+			}
 		}
 	} else {
-		/*
-		ez <= exy - 12
-		the 12 extra bits (1guard, 11round+sticky) are needed so with
-			lo = dadd(lo1, lo2)
-		elo <= ehi - 11, and we use the last 10 bits in adjust so
-			dadd(hi, lo)
-		gives correct result when rounded to double
-		*/
-		hi = xy;
-		lo2 = z;
-	}
-	/*
-	the result is stored before return for correct precision and exceptions
-
-	one corner case is when the underflow flag should be raised because
-	the precise result is an inexact subnormal double, but the calculated
-	long double result is an exact subnormal double
-	(so rounding to double does not raise exceptions)
-
-	in nearest rounding mode dadd takes care of this: the last bit of the
-	result is adjusted so rounding sees an inexact value when it should
-
-	in non-nearest rounding mode fenv is used for the workaround
-	*/
-	fesetround(round);
-	if (round == FE_TONEAREST)
-		z = dadd(hi, dadd(lo1, lo2));
-	else {
-#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
-		int e = fetestexcept(FE_INEXACT);
-		feclearexcept(FE_INEXACT);
-#endif
-		z = hi + (lo1 + lo2);
-#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
-		if (getexp(z) < 0x3fff-1022 && fetestexcept(FE_INEXACT))
-			feraiseexcept(FE_UNDERFLOW);
-		else if (e)
-			feraiseexcept(FE_INEXACT);
-#endif
-	}
-	return z;
-}
-#else
-/* origin: FreeBSD /usr/src/lib/msun/src/s_fma.c */
-/*-
- * Copyright (c) 2005-2011 David Schultz <das@FreeBSD.ORG>
- * All rights reserved.
- *
- * Redistribution and use in source and binary forms, with or without
- * modification, are permitted provided that the following conditions
- * are met:
- * 1. Redistributions of source code must retain the above copyright
- *    notice, this list of conditions and the following disclaimer.
- * 2. Redistributions in binary form must reproduce the above copyright
- *    notice, this list of conditions and the following disclaimer in the
- *    documentation and/or other materials provided with the distribution.
- *
- * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
- * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
- * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
- * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
- * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
- * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
- * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
- * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
- * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
- * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
- * SUCH DAMAGE.
- */
-
-/*
- * A struct dd represents a floating-point number with twice the precision
- * of a double.  We maintain the invariant that "hi" stores the 53 high-order
- * bits of the result.
- */
-struct dd {
-	double hi;
-	double lo;
-};
-
-/*
- * Compute a+b exactly, returning the exact result in a struct dd.  We assume
- * that both a and b are finite, but make no assumptions about their relative
- * magnitudes.
- */
-static inline struct dd dd_add(double a, double b)
-{
-	struct dd ret;
-	double s;
-
-	ret.hi = a + b;
-	s = ret.hi - a;
-	ret.lo = (a - (ret.hi - s)) + (b - s);
-	return (ret);
-}
-
-/*
- * Compute a+b, with a small tweak:  The least significant bit of the
- * result is adjusted into a sticky bit summarizing all the bits that
- * were lost to rounding.  This adjustment negates the effects of double
- * rounding when the result is added to another number with a higher
- * exponent.  For an explanation of round and sticky bits, see any reference
- * on FPU design, e.g.,
- *
- *     J. Coonen.  An Implementation Guide to a Proposed Standard for
- *     Floating-Point Arithmetic.  Computer, vol. 13, no. 1, Jan 1980.
- */
-static inline double add_adjusted(double a, double b)
-{
-	struct dd sum;
-	union {double f; uint64_t i;} uhi, ulo;
-
-	sum = dd_add(a, b);
-	if (sum.lo != 0) {
-		uhi.f = sum.hi;
-		if ((uhi.i & 1) == 0) {
-			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
-			ulo.f = sum.lo;
-			uhi.i += 1 - ((uhi.i ^ ulo.i) >> 62);
-			sum.hi = uhi.f;
+		zhi = 0;
+		d = -d;
+		if (d == 0) {
+			zlo = nz.m;
+		} else if (d < 64) {
+			zlo = nz.m>>d | !!(nz.m<<64-d);
+		} else {
+			zlo = 1;
 		}
 	}
-	return (sum.hi);
-}
-
-/*
- * Compute ldexp(a+b, scale) with a single rounding error. It is assumed
- * that the result will be subnormal, and care is taken to ensure that
- * double rounding does not occur.
- */
-static inline double add_and_denormalize(double a, double b, int scale)
-{
-	struct dd sum;
-	union {double f; uint64_t i;} uhi, ulo;
-	int bits_lost;
-
-	sum = dd_add(a, b);
-
-	/*
-	 * If we are losing at least two bits of accuracy to denormalization,
-	 * then the first lost bit becomes a round bit, and we adjust the
-	 * lowest bit of sum.hi to make it a sticky bit summarizing all the
-	 * bits in sum.lo. With the sticky bit adjusted, the hardware will
-	 * break any ties in the correct direction.
-	 *
-	 * If we are losing only one bit to denormalization, however, we must
-	 * break the ties manually.
-	 */
-	if (sum.lo != 0) {
-		uhi.f = sum.hi;
-		bits_lost = -((int)(uhi.i >> 52) & 0x7ff) - scale + 1;
-		if ((bits_lost != 1) ^ (int)(uhi.i & 1)) {
-			/* hibits += (int)copysign(1.0, sum.hi * sum.lo) */
-			ulo.f = sum.lo;
-			uhi.i += 1 - (((uhi.i ^ ulo.i) >> 62) & 2);
-			sum.hi = uhi.f;
-		}
-	}
-	return scalbn(sum.hi, scale);
-}
-
-/*
- * Compute a*b exactly, returning the exact result in a struct dd.  We assume
- * that both a and b are normalized, so no underflow or overflow will occur.
- * The current rounding mode must be round-to-nearest.
- */
-static inline struct dd dd_mul(double a, double b)
-{
-	static const double split = 0x1p27 + 1.0;
-	struct dd ret;
-	double ha, hb, la, lb, p, q;
-
-	p = a * split;
-	ha = a - p;
-	ha += p;
-	la = a - ha;
-
-	p = b * split;
-	hb = b - p;
-	hb += p;
-	lb = b - hb;
-
-	p = ha * hb;
-	q = ha * lb + la * hb;
-
-	ret.hi = p + q;
-	ret.lo = p - ret.hi + q + la * lb;
-	return (ret);
-}
 
-/*
- * Fused multiply-add: Compute x * y + z with a single rounding error.
- *
- * We use scaling to avoid overflow/underflow, along with the
- * canonical precision-doubling technique adapted from:
- *
- *      Dekker, T.  A Floating-Point Technique for Extending the
- *      Available Precision.  Numer. Math. 18, 224-242 (1971).
- *
- * This algorithm is sensitive to the rounding precision.  FPUs such
- * as the i387 must be set in double-precision mode if variables are
- * to be stored in FP registers in order to avoid incorrect results.
- * This is the default on FreeBSD, but not on many other systems.
- *
- * Hardware instructions should be used on architectures that support it,
- * since this implementation will likely be several times slower.
- */
-double fma(double x, double y, double z)
-{
-	#pragma STDC FENV_ACCESS ON
-	double xs, ys, zs, adj;
-	struct dd xy, r;
-	int oround;
-	int ex, ey, ez;
-	int spread;
-
-	/*
-	 * Handle special cases. The order of operations and the particular
-	 * return values here are crucial in handling special cases involving
-	 * infinities, NaNs, overflows, and signed zeroes correctly.
-	 */
-	if (!isfinite(x) || !isfinite(y))
-		return (x * y + z);
-	if (!isfinite(z))
-		return (z);
-	if (x == 0.0 || y == 0.0)
-		return (x * y + z);
-	if (z == 0.0)
-		return (x * y);
-
-	xs = frexp(x, &ex);
-	ys = frexp(y, &ey);
-	zs = frexp(z, &ez);
-	oround = fegetround();
-	spread = ex + ey - ez;
-
-	/*
-	 * If x * y and z are many orders of magnitude apart, the scaling
-	 * will overflow, so we handle these cases specially.  Rounding
-	 * modes other than FE_TONEAREST are painful.
-	 */
-	if (spread < -DBL_MANT_DIG) {
-#ifdef FE_INEXACT
-		feraiseexcept(FE_INEXACT);
-#endif
-#ifdef FE_UNDERFLOW
-		if (!isnormal(z))
-			feraiseexcept(FE_UNDERFLOW);
-#endif
-		switch (oround) {
-		default: /* FE_TONEAREST */
-			return (z);
-#ifdef FE_TOWARDZERO
-		case FE_TOWARDZERO:
-			if (x > 0.0 ^ y < 0.0 ^ z < 0.0)
-				return (z);
-			else
-				return (nextafter(z, 0));
-#endif
-#ifdef FE_DOWNWARD
-		case FE_DOWNWARD:
-			if (x > 0.0 ^ y < 0.0)
-				return (z);
-			else
-				return (nextafter(z, -INFINITY));
-#endif
-#ifdef FE_UPWARD
-		case FE_UPWARD:
-			if (x > 0.0 ^ y < 0.0)
-				return (nextafter(z, INFINITY));
-			else
-				return (z);
-#endif
+	/* add */
+	int sign = nx.sign^ny.sign;
+	int samesign = !(sign^nz.sign);
+	int nonzero = 1;
+	if (samesign) {
+		/* r += z */
+		rlo += zlo;
+		rhi += zhi + (rlo < zlo);
+	} else {
+		/* r -= z */
+		uint64_t t = rlo;
+		rlo -= zlo;
+		rhi = rhi - zhi - (t < rlo);
+		if (rhi>>63) {
+			rlo = -rlo;
+			rhi = -rhi-!!rlo;
+			sign = !sign;
 		}
+		nonzero = !!rhi;
 	}
-	if (spread <= DBL_MANT_DIG * 2)
-		zs = scalbn(zs, -spread);
-	else
-		zs = copysign(DBL_MIN, zs);
-
-	fesetround(FE_TONEAREST);
 
-	/*
-	 * Basic approach for round-to-nearest:
-	 *
-	 *     (xy.hi, xy.lo) = x * y           (exact)
-	 *     (r.hi, r.lo)   = xy.hi + z       (exact)
-	 *     adj = xy.lo + r.lo               (inexact; low bit is sticky)
-	 *     result = r.hi + adj              (correctly rounded)
-	 */
-	xy = dd_mul(xs, ys);
-	r = dd_add(xy.hi, zs);
-
-	spread = ex + ey;
-
-	if (r.hi == 0.0) {
-		/*
-		 * When the addends cancel to 0, ensure that the result has
-		 * the correct sign.
-		 */
-		fesetround(oround);
-		volatile double vzs = zs; /* XXX gcc CSE bug workaround */
-		return xy.hi + vzs + scalbn(xy.lo, spread);
+	/* set rhi to top 63bit of the result (last bit is sticky) */
+	if (nonzero) {
+		e += 64;
+		d = a_clz_64(rhi)-1;
+		/* note: d > 0 */
+		rhi = rhi<<d | rlo>>64-d | !!(rlo<<d);
+	} else if (rlo) {
+		d = a_clz_64(rlo)-1;
+		if (d < 0)
+			rhi = rlo>>1 | (rlo&1);
+		else
+			rhi = rlo<<d;
+	} else {
+		/* exact +-0 */
+		return x*y + z;
 	}
-
-	if (oround != FE_TONEAREST) {
-		/*
-		 * There is no need to worry about double rounding in directed
-		 * rounding modes.
-		 * But underflow may not be raised properly, example in downward rounding:
-		 * fma(0x1.000000001p-1000, 0x1.000000001p-30, -0x1p-1066)
-		 */
-		double ret;
-#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
-		int e = fetestexcept(FE_INEXACT);
-		feclearexcept(FE_INEXACT);
-#endif
-		fesetround(oround);
-		adj = r.lo + xy.lo;
-		ret = scalbn(r.hi + adj, spread);
-#if defined(FE_INEXACT) && defined(FE_UNDERFLOW)
-		if (ilogb(ret) < -1022 && fetestexcept(FE_INEXACT))
-			feraiseexcept(FE_UNDERFLOW);
-		else if (e)
-			feraiseexcept(FE_INEXACT);
-#endif
-		return ret;
+	e -= d;
+
+	/* convert to double */
+	int64_t i = rhi; /* i is in [1<<62,(1<<63)-1] */
+	if (sign)
+		i = -i;
+	double r = i; /* |r| is in [0x1p62,0x1p63] */
+
+	if (e < -1022-62) {
+		/* result is subnormal before rounding */
+		if (e == -1022-63) {
+			double c = 0x1p63;
+			if (sign)
+				c = -c;
+			if (r == c) {
+				/* min normal after rounding, underflow depends
+				   on arch behaviour which can be imitated by
+				   a double to float conversion */
+				float fltmin = 0x0.ffffff8p-63*FLT_MIN * r;
+				return DBL_MIN/FLT_MIN * fltmin;
+			}
+			/* one bit is lost when scaled, add another top bit to
+			   only round once at conversion if it is inexact */
+			if (rhi << 53) {
+				i = rhi>>1 | (rhi&1) | 1ull<<62;
+				if (sign)
+					i = -i;
+				r = i;
+				r = 2*r - c; /* remove top bit */
+
+				/* raise underflow portably, such that it
+				   cannot be optimized away */
+				{
+					double_t tiny = DBL_MIN/FLT_MIN * r;
+					r += (double)(tiny*tiny) * (r-r);
+				}
+			}
+		} else {
+			/* only round once when scaled */
+			d = 10;
+			i = ( rhi>>d | !!(rhi<<64-d) ) << d;
+			if (sign)
+				i = -i;
+			r = i;
+		}
 	}
-
-	adj = add_adjusted(r.lo, xy.lo);
-	if (spread + ilogb(r.hi) > -1023)
-		return scalbn(r.hi + adj, spread);
-	else
-		return add_and_denormalize(r.hi, adj, spread);
+	return scalbn(r, e);
 }
-#endif