diff options
Diffstat (limited to 'src/math/cos.c')
-rw-r--r-- | src/math/cos.c | 75 |
1 files changed, 75 insertions, 0 deletions
diff --git a/src/math/cos.c b/src/math/cos.c new file mode 100644 index 00000000..76990e7f --- /dev/null +++ b/src/math/cos.c @@ -0,0 +1,75 @@ +/* origin: FreeBSD /usr/src/lib/msun/src/s_cos.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ +/* cos(x) + * Return cosine function of x. + * + * kernel function: + * __sin ... sine function on [-pi/4,pi/4] + * __cos ... cosine function on [-pi/4,pi/4] + * __rem_pio2 ... argument reduction routine + * + * Method. + * Let S,C and T denote the sin, cos and tan respectively on + * [-PI/4, +PI/4]. Reduce the argument x to y1+y2 = x-k*pi/2 + * in [-pi/4 , +pi/4], and let n = k mod 4. + * We have + * + * n sin(x) cos(x) tan(x) + * ---------------------------------------------------------- + * 0 S C T + * 1 C -S -1/T + * 2 -S -C T + * 3 -C S -1/T + * ---------------------------------------------------------- + * + * Special cases: + * Let trig be any of sin, cos, or tan. + * trig(+-INF) is NaN, with signals; + * trig(NaN) is that NaN; + * + * Accuracy: + * TRIG(x) returns trig(x) nearly rounded + */ + +#include "libm.h" + +double cos(double x) +{ + double y[2],z=0.0; + int32_t n, ix; + + GET_HIGH_WORD(ix, x); + + /* |x| ~< pi/4 */ + ix &= 0x7fffffff; + if (ix <= 0x3fe921fb) { + if (ix < 0x3e46a09e) /* if x < 2**-27 * sqrt(2) */ + /* raise inexact if x != 0 */ + if ((int)x == 0) + return 1.0; + return __cos(x, z); + } + + /* cos(Inf or NaN) is NaN */ + if (ix >= 0x7ff00000) + return x-x; + + /* argument reduction needed */ + n = __rem_pio2(x, y); + switch (n&3) { + case 0: return __cos(y[0], y[1]); + case 1: return -__sin(y[0], y[1], 1); + case 2: return -__cos(y[0], y[1]); + default: + return __sin(y[0], y[1], 1); + } +} |