diff options
Diffstat (limited to 'src/math/__cosl.c')
-rw-r--r-- | src/math/__cosl.c | 76 |
1 files changed, 76 insertions, 0 deletions
diff --git a/src/math/__cosl.c b/src/math/__cosl.c new file mode 100644 index 00000000..9ea51ecf --- /dev/null +++ b/src/math/__cosl.c @@ -0,0 +1,76 @@ +/* origin: FreeBSD /usr/src/lib/msun/ld80/k_cosl.c */ +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * Copyright (c) 2008 Steven G. Kargl, David Schultz, Bruce D. Evans. + * + * Developed at SunSoft, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + + +#include "libm.h" + +#if LDBL_MANT_DIG == 64 && LDBL_MAX_EXP == 16384 +/* + * ld80 version of __cos.c. See __cos.c for most comments. + */ +/* + * Domain [-0.7854, 0.7854], range ~[-2.43e-23, 2.425e-23]: + * |cos(x) - c(x)| < 2**-75.1 + * + * The coefficients of c(x) were generated by a pari-gp script using + * a Remez algorithm that searches for the best higher coefficients + * after rounding leading coefficients to a specified precision. + * + * Simpler methods like Chebyshev or basic Remez barely suffice for + * cos() in 64-bit precision, because we want the coefficient of x^2 + * to be precisely -0.5 so that multiplying by it is exact, and plain + * rounding of the coefficients of a good polynomial approximation only + * gives this up to about 64-bit precision. Plain rounding also gives + * a mediocre approximation for the coefficient of x^4, but a rounding + * error of 0.5 ulps for this coefficient would only contribute ~0.01 + * ulps to the final error, so this is unimportant. Rounding errors in + * higher coefficients are even less important. + * + * In fact, coefficients above the x^4 one only need to have 53-bit + * precision, and this is more efficient. We get this optimization + * almost for free from the complications needed to search for the best + * higher coefficients. + */ +static const double one = 1.0; + +// FIXME +/* Long double constants are slow on these arches, and broken on i386. */ +static const volatile double +C1hi = 0.041666666666666664, /* 0x15555555555555.0p-57 */ +C1lo = 2.2598839032744733e-18; /* 0x14d80000000000.0p-111 */ +#define C1 ((long double)C1hi + C1lo) + +#if 0 +static const long double +C1 = 0.0416666666666666666136L; /* 0xaaaaaaaaaaaaaa9b.0p-68 */ +#endif + +static const double +C2 = -0.0013888888888888874, /* -0x16c16c16c16c10.0p-62 */ +C3 = 0.000024801587301571716, /* 0x1a01a01a018e22.0p-68 */ +C4 = -0.00000027557319215507120, /* -0x127e4fb7602f22.0p-74 */ +C5 = 0.0000000020876754400407278, /* 0x11eed8caaeccf1.0p-81 */ +C6 = -1.1470297442401303e-11, /* -0x19393412bd1529.0p-89 */ +C7 = 4.7383039476436467e-14; /* 0x1aac9d9af5c43e.0p-97 */ + +long double __cosl(long double x, long double y) +{ + long double hz,z,r,w; + + z = x*x; + r = z*(C1+z*(C2+z*(C3+z*(C4+z*(C5+z*(C6+z*C7)))))); + hz = 0.5*z; + w = one-hz; + return w + (((one-w)-hz) + (z*r-x*y)); +} +#endif |