about summary refs log tree commit diff
path: root/src/math/e_log.c
diff options
context:
space:
mode:
authorRich Felker <dalias@aerifal.cx>2012-03-13 01:17:53 -0400
committerRich Felker <dalias@aerifal.cx>2012-03-13 01:17:53 -0400
commitb69f695acedd4ce2798ef9ea28d834ceccc789bd (patch)
treeeafd98b9b75160210f3295ac074d699f863d958e /src/math/e_log.c
parentd46cf2e14cc4df7cc75e77d7009fcb6df1f48a33 (diff)
downloadmusl-b69f695acedd4ce2798ef9ea28d834ceccc789bd.tar.gz
musl-b69f695acedd4ce2798ef9ea28d834ceccc789bd.tar.xz
musl-b69f695acedd4ce2798ef9ea28d834ceccc789bd.zip
first commit of the new libm!
thanks to the hard work of Szabolcs Nagy (nsz), identifying the best
(from correctness and license standpoint) implementations from freebsd
and openbsd and cleaning them up! musl should now fully support c99
float and long double math functions, and has near-complete complex
math support. tgmath should also work (fully on gcc-compatible
compilers, and mostly on any c99 compiler).

based largely on commit 0376d44a890fea261506f1fc63833e7a686dca19 from
nsz's libm git repo, with some additions (dummy versions of a few
missing long double complex functions, etc.) by me.

various cleanups still need to be made, including re-adding (if
they're correct) some asm functions that were dropped.
Diffstat (limited to 'src/math/e_log.c')
-rw-r--r--src/math/e_log.c131
1 files changed, 0 insertions, 131 deletions
diff --git a/src/math/e_log.c b/src/math/e_log.c
deleted file mode 100644
index 9eb0e444..00000000
--- a/src/math/e_log.c
+++ /dev/null
@@ -1,131 +0,0 @@
-
-/* @(#)e_log.c 1.3 95/01/18 */
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunSoft, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice 
- * is preserved.
- * ====================================================
- */
-
-/* log(x)
- * Return the logrithm of x
- *
- * Method :                  
- *   1. Argument Reduction: find k and f such that 
- *                      x = 2^k * (1+f), 
- *         where  sqrt(2)/2 < 1+f < sqrt(2) .
- *
- *   2. Approximation of log(1+f).
- *      Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
- *               = 2s + 2/3 s**3 + 2/5 s**5 + .....,
- *               = 2s + s*R
- *      We use a special Reme algorithm on [0,0.1716] to generate 
- *      a polynomial of degree 14 to approximate R The maximum error 
- *      of this polynomial approximation is bounded by 2**-58.45. In
- *      other words,
- *                      2      4      6      8      10      12      14
- *          R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s  +Lg6*s  +Lg7*s
- *      (the values of Lg1 to Lg7 are listed in the program)
- *      and
- *          |      2          14          |     -58.45
- *          | Lg1*s +...+Lg7*s    -  R(z) | <= 2 
- *          |                             |
- *      Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
- *      In order to guarantee error in log below 1ulp, we compute log
- *      by
- *              log(1+f) = f - s*(f - R)        (if f is not too large)
- *              log(1+f) = f - (hfsq - s*(hfsq+R)).     (better accuracy)
- *      
- *      3. Finally,  log(x) = k*ln2 + log(1+f).  
- *                          = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
- *         Here ln2 is split into two floating point number: 
- *                      ln2_hi + ln2_lo,
- *         where n*ln2_hi is always exact for |n| < 2000.
- *
- * Special cases:
- *      log(x) is NaN with signal if x < 0 (including -INF) ; 
- *      log(+INF) is +INF; log(0) is -INF with signal;
- *      log(NaN) is that NaN with no signal.
- *
- * Accuracy:
- *      according to an error analysis, the error is always less than
- *      1 ulp (unit in the last place).
- *
- * Constants:
- * The hexadecimal values are the intended ones for the following 
- * constants. The decimal values may be used, provided that the 
- * compiler will convert from decimal to binary accurately enough 
- * to produce the hexadecimal values shown.
- */
-
-#include <math.h>
-#include "math_private.h"
-
-static const double
-ln2_hi  =  6.93147180369123816490e-01,  /* 3fe62e42 fee00000 */
-ln2_lo  =  1.90821492927058770002e-10,  /* 3dea39ef 35793c76 */
-two54   =  1.80143985094819840000e+16,  /* 43500000 00000000 */
-Lg1 = 6.666666666666735130e-01,  /* 3FE55555 55555593 */
-Lg2 = 3.999999999940941908e-01,  /* 3FD99999 9997FA04 */
-Lg3 = 2.857142874366239149e-01,  /* 3FD24924 94229359 */
-Lg4 = 2.222219843214978396e-01,  /* 3FCC71C5 1D8E78AF */
-Lg5 = 1.818357216161805012e-01,  /* 3FC74664 96CB03DE */
-Lg6 = 1.531383769920937332e-01,  /* 3FC39A09 D078C69F */
-Lg7 = 1.479819860511658591e-01;  /* 3FC2F112 DF3E5244 */
-
-static const double zero   =  0.0;
-
-double
-log(double x)
-{
-        double hfsq,f,s,z,R,w,t1,t2,dk;
-        int32_t k,hx,i,j;
-        uint32_t lx;
-
-        EXTRACT_WORDS(hx,lx,x);
-
-        k=0;
-        if (hx < 0x00100000) {                  /* x < 2**-1022  */
-            if (((hx&0x7fffffff)|lx)==0) 
-                return -two54/zero;             /* log(+-0)=-inf */
-            if (hx<0) return (x-x)/zero;        /* log(-#) = NaN */
-            k -= 54; x *= two54; /* subnormal number, scale up x */
-            GET_HIGH_WORD(hx,x);
-        } 
-        if (hx >= 0x7ff00000) return x+x;
-        k += (hx>>20)-1023;
-        hx &= 0x000fffff;
-        i = (hx+0x95f64)&0x100000;
-        SET_HIGH_WORD(x,hx|(i^0x3ff00000));     /* normalize x or x/2 */
-        k += (i>>20);
-        f = x-1.0;
-        if((0x000fffff&(2+hx))<3) {     /* |f| < 2**-20 */
-            if(f==zero) { if(k==0) return zero;  else {dk=(double)k;
-                                 return dk*ln2_hi+dk*ln2_lo;} }
-            R = f*f*(0.5-0.33333333333333333*f);
-            if(k==0) return f-R; else {dk=(double)k;
-                     return dk*ln2_hi-((R-dk*ln2_lo)-f);}
-        }
-        s = f/(2.0+f); 
-        dk = (double)k;
-        z = s*s;
-        i = hx-0x6147a;
-        w = z*z;
-        j = 0x6b851-hx;
-        t1= w*(Lg2+w*(Lg4+w*Lg6)); 
-        t2= z*(Lg1+w*(Lg3+w*(Lg5+w*Lg7))); 
-        i |= j;
-        R = t2+t1;
-        if(i>0) {
-            hfsq=0.5*f*f;
-            if(k==0) return f-(hfsq-s*(hfsq+R)); else
-                     return dk*ln2_hi-((hfsq-(s*(hfsq+R)+dk*ln2_lo))-f);
-        } else {
-            if(k==0) return f-s*(f-R); else
-                     return dk*ln2_hi-((s*(f-R)-dk*ln2_lo)-f);
-        }
-}