about summary refs log tree commit diff
path: root/sysdeps/x86_64/multiarch/strrchr-evex-base.S
blob: 4838358bfd9e91a2faaccfc75f961109a7469e92 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
/* Implementation for strrchr using evex256 and evex512.
   Copyright (C) 2022-2024 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include <isa-level.h>

#if ISA_SHOULD_BUILD (4)

# include <sysdep.h>

# ifdef USE_AS_WCSRCHR
#  if VEC_SIZE == 64
#   define RCX_M	cx
#   define KORTEST_M	kortestw
#  else
#   define RCX_M	cl
#   define KORTEST_M	kortestb
#  endif

#  define SHIFT_REG	VRCX
#  define CHAR_SIZE	4
#  define VPCMP		vpcmpd
#  define VPMIN		vpminud
#  define VPTESTN	vptestnmd
#  define VPTEST	vptestmd
#  define VPBROADCAST	vpbroadcastd
#  define VPCMPEQ	vpcmpeqd

# else
#  if VEC_SIZE == 64
#   define SHIFT_REG	VRCX
#  else
#   define SHIFT_REG	VRDI
#  endif
#  define CHAR_SIZE	1
#  define VPCMP		vpcmpb
#  define VPMIN		vpminub
#  define VPTESTN	vptestnmb
#  define VPTEST	vptestmb
#  define VPBROADCAST	vpbroadcastb
#  define VPCMPEQ	vpcmpeqb

#  define RCX_M		VRCX
#  define KORTEST_M	KORTEST
# endif

# if VEC_SIZE == 32 || (defined USE_AS_WCSRCHR)
#  define SHIFT_R(cnt, val)	shrx cnt, val, val
# else
#  define SHIFT_R(cnt, val)	shr %cl, val
# endif

# define VMATCH		VMM(0)
# define CHAR_PER_VEC	(VEC_SIZE / CHAR_SIZE)
# define PAGE_SIZE	4096

	.section SECTION(.text), "ax", @progbits
	/* Aligning entry point to 64 byte, provides better performance for
	   one vector length string.  */
ENTRY_P2ALIGN(STRRCHR, 6)
	movl	%edi, %eax
	/* Broadcast CHAR to VMATCH.  */
	VPBROADCAST %esi, %VMATCH

	andl	$(PAGE_SIZE - 1), %eax
	cmpl	$(PAGE_SIZE - VEC_SIZE), %eax
	jg	L(cross_page_boundary)
L(page_cross_continue):
	VMOVU	(%rdi), %VMM(1)
	/* k0 has a 1 for each zero CHAR in YMM1.  */
	VPTESTN	%VMM(1), %VMM(1), %k0
	KMOV	%k0, %VGPR(rsi)
	test	%VGPR(rsi), %VGPR(rsi)
	jz	L(aligned_more)
	/* fallthrough: zero CHAR in first VEC.  */

	/* K1 has a 1 for each search CHAR match in VEC(1).  */
	VPCMPEQ	%VMATCH, %VMM(1), %k1
	KMOV	%k1, %VGPR(rax)
	/* Build mask up until first zero CHAR (used to mask of
	   potential search CHAR matches past the end of the string).  */
	blsmsk	%VGPR(rsi), %VGPR(rsi)
	/* Use `and` here to remove any out of bounds matches so we can
	   do a reverse scan on `rax` to find the last match.  */
	and	%VGPR(rsi), %VGPR(rax)
	jz	L(ret0)
	/* Get last match.  */
	bsr	%VGPR(rax), %VGPR(rax)
# ifdef USE_AS_WCSRCHR
	leaq	(%rdi, %rax, CHAR_SIZE), %rax
# else
	addq	%rdi, %rax
# endif
L(ret0):
	ret

	/* Returns for first vec x1/x2/x3 have hard coded backward
	   search path for earlier matches.  */
	.p2align 4,, 6
L(first_vec_x1):
	VPCMPEQ	%VMATCH, %VMM(2), %k1
	KMOV	%k1, %VGPR(rax)
	blsmsk	%VGPR(rcx), %VGPR(rcx)
	/* eax non-zero if search CHAR in range.  */
	and	%VGPR(rcx), %VGPR(rax)
	jnz	L(first_vec_x1_return)

	/* fallthrough: no match in YMM2 then need to check for earlier
	   matches (in YMM1).  */
	.p2align 4,, 4
L(first_vec_x0_test):
	VPCMPEQ	%VMATCH, %VMM(1), %k1
	KMOV	%k1, %VGPR(rax)
	test	%VGPR(rax), %VGPR(rax)
	jz	L(ret1)
	bsr	%VGPR(rax), %VGPR(rax)
# ifdef USE_AS_WCSRCHR
	leaq	(%rsi, %rax, CHAR_SIZE), %rax
# else
	addq	%rsi, %rax
# endif
L(ret1):
	ret

	.p2align 4,, 10
L(first_vec_x3):
	VPCMPEQ	%VMATCH, %VMM(4), %k1
	KMOV	%k1, %VGPR(rax)
	blsmsk	%VGPR(rcx), %VGPR(rcx)
	/* If no search CHAR match in range check YMM1/YMM2/YMM3.  */
	and	%VGPR(rcx), %VGPR(rax)
	jz	L(first_vec_x1_or_x2)
	bsr	%VGPR(rax), %VGPR(rax)
	leaq	(VEC_SIZE * 3)(%rdi, %rax, CHAR_SIZE), %rax
	ret
	.p2align 4,, 4

L(first_vec_x2):
	VPCMPEQ	%VMATCH, %VMM(3), %k1
	KMOV	%k1, %VGPR(rax)
	blsmsk	%VGPR(rcx), %VGPR(rcx)
	/* Check YMM3 for last match first. If no match try YMM2/YMM1.  */
	and	%VGPR(rcx), %VGPR(rax)
	jz	L(first_vec_x0_x1_test)
	bsr	%VGPR(rax), %VGPR(rax)
	leaq	(VEC_SIZE * 2)(%r8, %rax, CHAR_SIZE), %rax
	ret

	.p2align 4,, 6
L(first_vec_x0_x1_test):
	VPCMPEQ	%VMATCH, %VMM(2), %k1
	KMOV	%k1, %VGPR(rax)
	/* Check YMM2 for last match first. If no match try YMM1.  */
	test	%VGPR(rax), %VGPR(rax)
	jz	L(first_vec_x0_test)
	.p2align 4,, 4
L(first_vec_x1_return):
	bsr	%VGPR(rax), %VGPR(rax)
	leaq	(VEC_SIZE)(%r8, %rax, CHAR_SIZE), %rax
	ret

	.p2align 4,, 12
L(aligned_more):
	/* Need to keep original pointer incase VEC(1) has last match.  */
	movq	%rdi, %rsi
	andq	$-VEC_SIZE, %rdi

	VMOVU	VEC_SIZE(%rdi), %VMM(2)
	VPTESTN	%VMM(2), %VMM(2), %k0
	KMOV	%k0, %VRCX
	movq	%rdi, %r8
	test	%VRCX, %VRCX
	jnz	L(first_vec_x1)

	VMOVU	(VEC_SIZE * 2)(%rdi), %VMM(3)
	VPTESTN	%VMM(3), %VMM(3), %k0
	KMOV	%k0, %VRCX

	test	%VRCX, %VRCX
	jnz	L(first_vec_x2)

	VMOVU	(VEC_SIZE * 3)(%rdi), %VMM(4)
	VPTESTN	%VMM(4), %VMM(4), %k0
	KMOV	%k0, %VRCX

	/* Intentionally use 64-bit here.  EVEX256 version needs 1-byte
	   padding for efficient nop before loop alignment.  */
	test	%rcx, %rcx
	jnz	L(first_vec_x3)

	andq	$-(VEC_SIZE * 2), %rdi
	.p2align 4
L(first_aligned_loop):
	/* Preserve VEC(1), VEC(2), VEC(3), and VEC(4) until we can
	   gurantee they don't store a match.  */
	VMOVA	(VEC_SIZE * 4)(%rdi), %VMM(5)
	VMOVA	(VEC_SIZE * 5)(%rdi), %VMM(6)

	VPCMP	$4, %VMM(5), %VMATCH, %k2
	VPCMP	$4, %VMM(6), %VMATCH, %k3{%k2}

	VPMIN	%VMM(5), %VMM(6), %VMM(7)

	VPTEST	%VMM(7), %VMM(7), %k1{%k3}
	subq	$(VEC_SIZE * -2), %rdi
	KORTEST_M %k1, %k1
	jc	L(first_aligned_loop)

	VPTESTN	%VMM(7), %VMM(7), %k1
	KMOV	%k1, %VRDX
	test	%VRDX, %VRDX
	jz	L(second_aligned_loop_prep)

	KORTEST_M %k3, %k3
	jnc	L(return_first_aligned_loop)

	.p2align 4,, 6
L(first_vec_x1_or_x2_or_x3):
	VPCMPEQ	%VMM(4), %VMATCH, %k4
	KMOV	%k4, %VRAX
	test	%VRAX, %VRAX
	jz	L(first_vec_x1_or_x2)
	bsr	%VRAX, %VRAX
	leaq	(VEC_SIZE * 3)(%r8, %rax, CHAR_SIZE), %rax
	ret

	.p2align 4,, 8
L(return_first_aligned_loop):
	VPTESTN	%VMM(5), %VMM(5), %k0
	KMOV	%k0, %VRCX
	blsmsk	%VRCX, %VRCX
	jnc	L(return_first_new_match_first)
	blsmsk	%VRDX, %VRDX
	VPCMPEQ	%VMM(6), %VMATCH, %k0
	KMOV	%k0, %VRAX
	addq	$VEC_SIZE, %rdi
	and	%VRDX, %VRAX
	jnz	L(return_first_new_match_ret)
	subq	$VEC_SIZE, %rdi
L(return_first_new_match_first):
	KMOV	%k2, %VRAX
# ifdef USE_AS_WCSRCHR
	xorl	$((1 << CHAR_PER_VEC)- 1), %VRAX
	and	%VRCX, %VRAX
# else
	andn	%VRCX, %VRAX, %VRAX
# endif
	jz	L(first_vec_x1_or_x2_or_x3)
L(return_first_new_match_ret):
	bsr	%VRAX, %VRAX
	leaq	(VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax
	ret

	.p2align 4,, 10
L(first_vec_x1_or_x2):
	VPCMPEQ	%VMM(3), %VMATCH, %k3
	KMOV	%k3, %VRAX
	test	%VRAX, %VRAX
	jz	L(first_vec_x0_x1_test)
	bsr	%VRAX, %VRAX
	leaq	(VEC_SIZE * 2)(%r8, %rax, CHAR_SIZE), %rax
	ret

	.p2align 4
	/* We can throw away the work done for the first 4x checks here
	   as we have a later match. This is the 'fast' path persay.  */
L(second_aligned_loop_prep):
L(second_aligned_loop_set_furthest_match):
	movq	%rdi, %rsi
	VMOVA	%VMM(5), %VMM(7)
	VMOVA	%VMM(6), %VMM(8)
	.p2align 4
L(second_aligned_loop):
	VMOVU	(VEC_SIZE * 4)(%rdi), %VMM(5)
	VMOVU	(VEC_SIZE * 5)(%rdi), %VMM(6)
	VPCMP	$4, %VMM(5), %VMATCH, %k2
	VPCMP	$4, %VMM(6), %VMATCH, %k3{%k2}

	VPMIN	%VMM(5), %VMM(6), %VMM(4)

	VPTEST	%VMM(4), %VMM(4), %k1{%k3}
	subq	$(VEC_SIZE * -2), %rdi
	KMOV	%k1, %VRCX
	inc	%RCX_M
	jz	L(second_aligned_loop)
	VPTESTN	%VMM(4), %VMM(4), %k1
	KMOV	%k1, %VRDX
	test	%VRDX, %VRDX
	jz	L(second_aligned_loop_set_furthest_match)

	KORTEST_M %k3, %k3
	jnc	L(return_new_match)
	/* branch here because there is a significant advantage interms
	   of output dependency chance in using edx.  */

L(return_old_match):
	VPCMPEQ	%VMM(8), %VMATCH, %k0
	KMOV	%k0, %VRCX
	bsr	%VRCX, %VRCX
	jnz	L(return_old_match_ret)

	VPCMPEQ	%VMM(7), %VMATCH, %k0
	KMOV	%k0, %VRCX
	bsr	%VRCX, %VRCX
	subq	$VEC_SIZE, %rsi
L(return_old_match_ret):
	leaq	(VEC_SIZE * 3)(%rsi, %rcx, CHAR_SIZE), %rax
	ret

L(return_new_match):
	VPTESTN	%VMM(5), %VMM(5), %k0
	KMOV	%k0, %VRCX
	blsmsk	%VRCX, %VRCX
	jnc	L(return_new_match_first)
	dec	%VRDX
	VPCMPEQ	%VMM(6), %VMATCH, %k0
	KMOV	%k0, %VRAX
	addq	$VEC_SIZE, %rdi
	and	%VRDX, %VRAX
	jnz	L(return_new_match_ret)
	subq	$VEC_SIZE, %rdi
L(return_new_match_first):
	KMOV	%k2, %VRAX
# ifdef USE_AS_WCSRCHR
	xorl	$((1 << CHAR_PER_VEC)- 1), %VRAX
	and	%VRCX, %VRAX
# else
	andn	%VRCX, %VRAX, %VRAX
# endif
	jz	L(return_old_match)
L(return_new_match_ret):
	bsr	%VRAX, %VRAX
	leaq	(VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %rax
	ret

L(cross_page_boundary):
	/* eax contains all the page offset bits of src (rdi). `xor rdi,
	   rax` sets pointer will all page offset bits cleared so
	   offset of (PAGE_SIZE - VEC_SIZE) will get last aligned VEC
	   before page cross (guaranteed to be safe to read). Doing this
	   as opposed to `movq %rdi, %rax; andq $-VEC_SIZE, %rax` saves
	   a bit of code size.  */
	xorq	%rdi, %rax
	VMOVU	(PAGE_SIZE - VEC_SIZE)(%rax), %VMM(1)
	VPTESTN	%VMM(1), %VMM(1), %k0
	KMOV	%k0, %VRSI

	/* Shift out zero CHAR matches that are before the beginning of
	   src (rdi).  */
# if VEC_SIZE == 64 || (defined USE_AS_WCSRCHR)
	movl	%edi, %ecx
# endif
# ifdef USE_AS_WCSRCHR
	andl	$(VEC_SIZE - 1), %ecx
	shrl	$2, %ecx
# endif
	SHIFT_R	(%SHIFT_REG, %VRSI)
# if VEC_SIZE == 32 || (defined USE_AS_WCSRCHR)
	/* For strrchr-evex512 we use SHIFT_R as shr which will set zero
	   flag.  */
	test	%VRSI, %VRSI
# endif
	jz	L(page_cross_continue)

	/* Found zero CHAR so need to test for search CHAR.  */
	VPCMPEQ	%VMATCH, %VMM(1), %k1
	KMOV	%k1, %VRAX
	/* Shift out search CHAR matches that are before the beginning of
	   src (rdi).  */
	SHIFT_R	(%SHIFT_REG, %VRAX)
	/* Check if any search CHAR match in range.  */
	blsmsk	%VRSI, %VRSI
	and	%VRSI, %VRAX
	jz	L(ret2)
	bsr	%VRAX, %VRAX
# ifdef USE_AS_WCSRCHR
	leaq	(%rdi, %rax, CHAR_SIZE), %rax
# else
	addq	%rdi, %rax
# endif
L(ret2):
	ret
	/* 3 bytes from cache-line for evex.  */
	/* 0 bytes from cache-line for evex512.  */
END(STRRCHR)
#endif