about summary refs log tree commit diff
path: root/sysdeps/x86_64/multiarch/strncpy-evex.S
blob: dec8cccc2bea07da473b0ff747ea07c029691bd9 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
/* {wcs|wcp|str|stp}ncpy with 256/512-bit EVEX instructions.
   Copyright (C) 2022 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include <isa-level.h>

#if ISA_SHOULD_BUILD (4)

	/* Use evex-masked stores for small sizes. Turned off at the
	   moment.  */
# define USE_EVEX_MASKED_STORE	0


# include <sysdep.h>
# ifndef VEC_SIZE
#  include "x86-evex256-vecs.h"
# endif


# ifndef STRNCPY
#  define STRNCPY	__strncpy_evex
# endif

# ifdef USE_AS_WCSCPY
#  define VMOVU_MASK	vmovdqu32
#  define VPCMPEQ	vpcmpeqd
#  define VPMIN	vpminud
#  define VPTESTN	vptestnmd
#  define VPTEST	vptestmd
#  define CHAR_SIZE	4

#  define REP_MOVS	rep movsd
#  define REP_STOS	rep stosl

#  define USE_WIDE_CHAR

# else
#  define VMOVU_MASK	vmovdqu8
#  define VPCMPEQ	vpcmpeqb
#  define VPMIN	vpminub
#  define VPTESTN	vptestnmb
#  define VPTEST	vptestmb
#  define CHAR_SIZE	1

#  define REP_MOVS	rep movsb
#  define REP_STOS	rep stosb
# endif

# include "strncpy-or-cat-overflow-def.h"

# define PAGE_SIZE	4096
# define CHAR_PER_VEC	(VEC_SIZE / CHAR_SIZE)

# include "reg-macros.h"


# define VZERO	VMM(7)
# define VZERO_256	VMM_256(7)
# define VZERO_128	VMM_128(7)

# if VEC_SIZE == 64
#  define VZERO_HALF	VZERO_256
# else
#  define VZERO_HALF	VZERO_128
# endif

	.section SECTION(.text), "ax", @progbits
ENTRY(STRNCPY)
# ifdef __ILP32__
	/* Clear the upper 32 bits.  */
	movl	%edx, %edx
# endif
	/* Filter zero length strings and very long strings.  Zero
	   length strings just return, very long strings are handled by
	   just running rep stos{b|l} to zero set (which will almost
	   certainly segfault), if that succeeds then just calling
	   OVERFLOW_STRCPY (strcpy, stpcpy, wcscpy, wcpcpy).  */
# ifdef USE_AS_WCSCPY
	decq	%rdx
	movq	%rdx, %rax
	/* 56 is end of max supported address space.  */
	shr	$56, %rax
	jnz	L(zero_len)
# else
	decq	%rdx
	/* If the flag needs to become `jb` replace `dec` with `sub`.
	 */
	jl	L(zero_len)
# endif

	vpxorq	%VZERO_128, %VZERO_128, %VZERO_128
	movl	%esi, %eax
	andl	$(PAGE_SIZE - 1), %eax
	cmpl	$(PAGE_SIZE - VEC_SIZE), %eax
	ja	L(page_cross)

L(page_cross_continue):
	VMOVU	(%rsi), %VMM(0)
	VPTESTN	%VMM(0), %VMM(0), %k0
	KMOV	%k0, %VRCX

	/* If no STPCPY just save end ahead of time.  */
# ifndef USE_AS_STPCPY
	movq	%rdi, %rax
# endif


	cmpq	$(CHAR_PER_VEC), %rdx

	/* If USE_EVEX_MASK_STORE is enabled then we just handle length
	   <= CHAR_PER_VEC with masked instructions (which have
	   potential for dramatically bad perf if dst splits a page and
	   is not in the TLB).  */
# if USE_EVEX_MASKED_STORE
	/* `jae` because length rdx is now length - 1.  */
	jae	L(more_1x_vec)

	/* If there where multiple zero-CHAR matches in the first VEC,
	   VRCX will be overset but thats fine since any oversets where
	   at zero-positions anyways.  */

#  ifdef USE_AS_STPCPY
	tzcnt	%VRCX, %VRAX
	cmpl	%eax, %edx
	cmovb	%edx, %eax
#   ifdef USE_AS_WCSCPY
	adcl	$0, %eax
	leaq	(%rdi, %rax, CHAR_SIZE), %rax
#   else
	adcq	%rdi, %rax
#   endif
#  endif
	dec	%VRCX

	/* Zero out all non-zero CHAR's after the first zero match.  */
	KMOV	%VRCX, %k1

	/* Use VZERO as destination so this can be reused for
	   L(zfill_less_vec) (which if jumped to by subsequent logic
	   will have zerod out VZERO.  */
	VMOVU_MASK %VMM(0), %VZERO{%k1}{z}
L(zfill_less_vec):
	/* Get mask for what we need to set.  */
	incl	%edx
	mov	$-1, %VRCX
	bzhi	%VRDX, %VRCX, %VRCX
	KMOV	%VRCX, %k1
	VMOVU_MASK %VZERO, (%rdi){%k1}
	ret

	.p2align 4,, 4
L(zero_len):
	cmpq	$-1, %rdx
	jne	L(best_effort_strncpy)
	movq	%rdi, %rax
	ret

	.p2align 4,, 8
L(more_1x_vec):
# else
	/* `jb` because length rdx is now length - 1.  */
	jb	L(less_1x_vec)
# endif


	/* This may overset but thats fine because we still need to zero
	   fill.  */
	VMOVU	%VMM(0), (%rdi)


	/* Length must be >= CHAR_PER_VEC so match here means we must
	   zero-fill.  */
	test	%VRCX, %VRCX
	jnz	L(zfill)


	/* We are going to align rsi here so will need to be able to re-
	   adjust rdi/rdx afterwords. NB: We filtered out huge lengths
	   so rsi + rdx * CHAR_SIZE cannot overflow.  */
	leaq	(VEC_SIZE * -1)(%rsi, %rdx, CHAR_SIZE), %rdx
	subq	%rsi, %rdi
	andq	$-(VEC_SIZE), %rsi

L(loop_last_4x_vec):
	addq	%rsi, %rdi
	subq	%rsi, %rdx
# ifdef USE_AS_WCSCPY
	shrq	$2, %rdx
# endif

	VMOVA	(VEC_SIZE * 1)(%rsi), %VMM(1)
	VPTESTN	%VMM(1), %VMM(1), %k0
	KMOV	%k0, %VRCX

	/* -1 because of the `dec %rdx` earlier.  */
	cmpq	$(CHAR_PER_VEC * 2 - 1), %rdx
	ja	L(more_2x_vec)

L(last_2x_vec):
	/* This will be need to be computed no matter what. We do it
	   ahead of time for CHAR_PER_VEC == 64 because we can't adjust
	   the value of `tzcnt` with a shift.  */
# if CHAR_PER_VEC == 64
	tzcntq	%rcx, %rcx
# endif

	cmpl	$(CHAR_PER_VEC), %edx
	jb	L(ret_vec_x1_len)

	/* Seperate logic for CHAR_PER_VEC == 64 because we already did
	   `tzcnt` on VRCX.  */
# if CHAR_PER_VEC == 64
	/* cl == CHAR_PER_VEC iff it was zero before the `tzcnt`.  */
	cmpb	$CHAR_PER_VEC, %cl
	jnz	L(ret_vec_x1_no_bsf)
# else
	test	%VRCX, %VRCX
	jnz	L(ret_vec_x1)
# endif



	VPCMPEQ	(VEC_SIZE * 2)(%rsi), %VZERO, %k0
	VMOVU	%VMM(1), (VEC_SIZE * 1)(%rdi)
	KMOV	%k0, %VRCX

# if CHAR_PER_VEC < 64
	/* This essentiallys adds CHAR_PER_VEC to computed result.  */
	shlq	$CHAR_PER_VEC, %rcx
# else
	tzcntq	%rcx, %rcx
	addl	$CHAR_PER_VEC, %ecx
# endif

	.p2align 4,, 4
L(ret_vec_x1_len):
	/* If CHAR_PER_VEC < 64 we still need to tzcnt, otherwise it has
	   already been done.  */
# if CHAR_PER_VEC < 64
	tzcntq	%rcx, %rcx
# endif
	cmpl	%ecx, %edx
	jbe	L(ret_vec_x1_len_no_zfill)
	/* Fall through (expectation) is copy len < buffer len.  */
	VMOVU	%VZERO, ((VEC_SIZE)-(VEC_SIZE - CHAR_SIZE))(%rdi, %rdx, CHAR_SIZE)
L(ret_vec_x1_len_no_zfill_mov):
	movl	%ecx, %edx
# ifdef USE_AS_STPCPY
	/* clear flags.  */
	xorl	%ecx, %ecx
# endif
L(ret_vec_x1_len_no_zfill):
	VMOVU	((VEC_SIZE)-(VEC_SIZE - CHAR_SIZE))(%rsi, %rdx, CHAR_SIZE), %VMM(0)
	VMOVU	%VMM(0), ((VEC_SIZE)-(VEC_SIZE - CHAR_SIZE))(%rdi, %rdx, CHAR_SIZE)
# ifdef USE_AS_STPCPY
#  ifdef USE_AS_WCSCPY
	adcq	$0, %rdx
	leaq	(VEC_SIZE * 1)(%rdi, %rdx, CHAR_SIZE), %rax
#  else
	leal	(VEC_SIZE)(%rdx), %eax
	adcq	%rdi, %rax
#  endif
# endif
	ret


	.p2align 4,, 10
L(ret_vec_x1):
	bsf	%VRCX, %VRCX
L(ret_vec_x1_no_bsf):
	VMOVU	%VZERO, ((VEC_SIZE)-(VEC_SIZE - CHAR_SIZE))(%rdi, %rdx, CHAR_SIZE)
	subl	%ecx, %edx
	cmpl	$CHAR_PER_VEC, %edx
	jb	L(ret_vec_x1_len_no_zfill_mov)
	/* Fall through (expectation) is copy len < buffer len.  */
	VMOVU	%VMM(1), (VEC_SIZE * 1)(%rdi)
	VMOVU	%VZERO, (VEC_SIZE * 1)(%rdi, %rcx, CHAR_SIZE)
# ifdef USE_AS_STPCPY
	leaq	(VEC_SIZE * 1)(%rdi, %rcx, CHAR_SIZE), %rax
# endif
	ret

	.p2align 4,, 8
L(last_4x_vec):
	/* Seperate logic for CHAR_PER_VEC == 64 because we can do `andl
	   $(CHAR_PER_VEC * 4 - 1), %edx` with less code size just
	   using `movzbl`.  */
# if CHAR_PER_VEC == 64
	movzbl	%dl, %edx
# else
	andl	$(CHAR_PER_VEC * 4 - 1), %edx
# endif
	VMOVA	(VEC_SIZE * 5)(%rsi), %VMM(1)
	VPTESTN	%VMM(1), %VMM(1), %k0
	KMOV	%k0, %VRCX
	subq	$-(VEC_SIZE * 4), %rsi
	subq	$-(VEC_SIZE * 4), %rdi
	cmpl	$(CHAR_PER_VEC * 2 - 1), %edx
	jbe	L(last_2x_vec)
	.p2align 4,, 8
L(more_2x_vec):
	VMOVU	%VMM(1), (VEC_SIZE * 1)(%rdi)
	test	%VRCX, %VRCX
	/* Must fill at least 2x VEC.  */
	jnz	L(zfill_vec1)

	VMOVA	(VEC_SIZE * 2)(%rsi), %VMM(2)
	VMOVU	%VMM(2), (VEC_SIZE * 2)(%rdi)
	VPTESTN	%VMM(2), %VMM(2), %k0
	KMOV	%k0, %VRCX
	test	%VRCX, %VRCX
	/* Must fill at least 1x VEC.  */
	jnz	L(zfill_vec2)

	VMOVA	(VEC_SIZE * 3)(%rsi), %VMM(3)
	VPTESTN	%VMM(3), %VMM(3), %k0
	KMOV	%k0, %VRCX

	/* Check if len is more 4x VEC. -1 because rdx is len - 1.  */
	cmpq	$(CHAR_PER_VEC * 4 - 1), %rdx
	ja	L(more_4x_vec)

	subl	$(CHAR_PER_VEC * 3), %edx
	jb	L(ret_vec_x3_len)

	test	%VRCX, %VRCX
	jnz	L(ret_vec_x3)

	VPCMPEQ	(VEC_SIZE * 4)(%rsi), %VZERO, %k0
	VMOVU	%VMM(3), (VEC_SIZE * 3)(%rdi)
	KMOV	%k0, %VRCX
	tzcnt	%VRCX, %VRCX
	cmpl	%ecx, %edx
	jbe	L(ret_vec_x4_len_no_zfill)
	/* Fall through (expectation) is copy len < buffer len.  */
	VMOVU	%VZERO, ((VEC_SIZE * 4)-(VEC_SIZE - CHAR_SIZE))(%rdi, %rdx, CHAR_SIZE)
	movl	%ecx, %edx
L(ret_vec_x4_len_no_zfill):
	VMOVU	((VEC_SIZE * 4)-(VEC_SIZE - CHAR_SIZE))(%rsi, %rdx, CHAR_SIZE), %VMM(0)
	VMOVU	%VMM(0), ((VEC_SIZE * 4)-(VEC_SIZE - CHAR_SIZE))(%rdi, %rdx, CHAR_SIZE)
# ifdef USE_AS_STPCPY
#  ifdef USE_AS_WCSCPY
	adcq	$0, %rdx
	leaq	(VEC_SIZE * 4)(%rdi, %rdx, CHAR_SIZE), %rax
#  else
	leal	(VEC_SIZE * 4 + 0)(%rdx), %eax
	adcq	%rdi, %rax
#  endif
# endif
	ret


L(ret_vec_x3_len):
	addl	$(CHAR_PER_VEC * 1), %edx
	tzcnt	%VRCX, %VRCX
	cmpl	%ecx, %edx
	jbe	L(ret_vec_x3_len_no_zfill)
	/* Fall through (expectation) is copy len < buffer len.  */
	VMOVU	%VZERO, ((VEC_SIZE * 3)-(VEC_SIZE - CHAR_SIZE))(%rdi, %rdx, CHAR_SIZE)
L(ret_vec_x3_len_no_zfill_mov):
	movl	%ecx, %edx
# ifdef USE_AS_STPCPY
	/* clear flags.  */
	xorl	%ecx, %ecx
# endif
	.p2align 4,, 4
L(ret_vec_x3_len_no_zfill):
	VMOVU	((VEC_SIZE * 3)-(VEC_SIZE - CHAR_SIZE))(%rsi, %rdx, CHAR_SIZE), %VMM(0)
	VMOVU	%VMM(0), ((VEC_SIZE * 3)-(VEC_SIZE - CHAR_SIZE))(%rdi, %rdx, CHAR_SIZE)
# ifdef USE_AS_STPCPY
#  ifdef USE_AS_WCSCPY
	adcq	$0, %rdx
	leaq	(VEC_SIZE * 3)(%rdi, %rdx, CHAR_SIZE), %rax
#  else
	leal	(VEC_SIZE * 3 + 0)(%rdx), %eax
	adcq	%rdi, %rax
#  endif
# endif
	ret


	.p2align 4,, 8
L(ret_vec_x3):
	bsf	%VRCX, %VRCX
	VMOVU	%VZERO, (VEC_SIZE * 4 +(-(VEC_SIZE - CHAR_SIZE)))(%rdi, %rdx, CHAR_SIZE)
	subl	%ecx, %edx
	jl	L(ret_vec_x3_len_no_zfill_mov)
	VMOVU	%VMM(3), (VEC_SIZE * 3)(%rdi)
	VMOVU	%VZERO, (VEC_SIZE * 3)(%rdi, %rcx, CHAR_SIZE)
# ifdef USE_AS_STPCPY
	leaq	(VEC_SIZE * 3)(%rdi, %rcx, CHAR_SIZE), %rax
# endif
	ret

	.p2align 4,, 8
L(more_4x_vec):
	VMOVU	%VMM(3), (VEC_SIZE * 3)(%rdi)
	test	%VRCX, %VRCX
	jnz	L(zfill_vec3)

	VMOVA	(VEC_SIZE * 4)(%rsi), %VMM(4)
	VMOVU	%VMM(4), (VEC_SIZE * 4)(%rdi)
	VPTESTN	%VMM(4), %VMM(4), %k0
	KMOV	%k0, %VRCX
	test	%VRCX, %VRCX
	jnz	L(zfill_vec4)

	/* Recheck length before aligning.  */
	cmpq	$(CHAR_PER_VEC * 8 - 1), %rdx
	jbe	L(last_4x_vec)

	/* Align rsi to VEC_SIZE * 4, need to readjust rdx / rdi.  */
# ifdef USE_AS_WCSCPY
	leaq	(%rsi, %rdx, CHAR_SIZE), %rdx
# else
	addq	%rsi, %rdx
# endif
	subq	%rsi, %rdi
	subq	$-(VEC_SIZE * 5), %rsi
	andq	$(VEC_SIZE * -4), %rsi


	/* Load first half of the loop before entry.  */
	VMOVA	(VEC_SIZE * 0 + 0)(%rsi), %VMM(0)
	VMOVA	(VEC_SIZE * 1 + 0)(%rsi), %VMM(1)
	VMOVA	(VEC_SIZE * 2 + 0)(%rsi), %VMM(2)
	VMOVA	(VEC_SIZE * 3 + 0)(%rsi), %VMM(3)

	VPMIN	%VMM(0), %VMM(1), %VMM(4)
	VPMIN	%VMM(2), %VMM(3), %VMM(6)
	VPTESTN	%VMM(4), %VMM(4), %k2
	VPTESTN	%VMM(6), %VMM(6), %k4


	/* Offset rsi by VEC_SIZE so that we can jump to
	   L(loop_last_4x_vec).  */
	addq	$-(VEC_SIZE), %rsi
	KORTEST	%k2, %k4
	jnz	L(loop_4x_done)

	/* Store loop end in r9.  */
	leaq	-(VEC_SIZE * 5 - CHAR_SIZE)(%rdx), %r9

	.p2align 4,, 11
L(loop_4x_vec):
	VMOVU	%VMM(0), (VEC_SIZE * 1 + 0)(%rdi, %rsi)
	VMOVU	%VMM(1), (VEC_SIZE * 2 + 0)(%rdi, %rsi)
	VMOVU	%VMM(2), (VEC_SIZE * 3 + 0)(%rdi, %rsi)
	VMOVU	%VMM(3), (VEC_SIZE * 4 + 0)(%rdi, %rsi)

	subq	$(VEC_SIZE * -4), %rsi
	cmpq	%rsi, %r9
	jbe	L(loop_last_4x_vec)

	VMOVA	(VEC_SIZE * 1 + 0)(%rsi), %VMM(0)
	VMOVA	(VEC_SIZE * 2 + 0)(%rsi), %VMM(1)
	VMOVA	(VEC_SIZE * 3 + 0)(%rsi), %VMM(2)
	VMOVA	(VEC_SIZE * 4 + 0)(%rsi), %VMM(3)

	VPMIN	%VMM(0), %VMM(1), %VMM(4)
	VPMIN	%VMM(2), %VMM(3), %VMM(6)
	VPTESTN	%VMM(4), %VMM(4), %k2
	VPTESTN	%VMM(6), %VMM(6), %k4
	KORTEST	%k2, %k4
	jz	L(loop_4x_vec)

L(loop_4x_done):
	/* Restore rdx (length).  */
	subq	%rsi, %rdx
# ifdef USE_AS_WCSCPY
	shrq	$2, %rdx
# endif
	VMOVU	%VMM(0), (VEC_SIZE * 1 + 0)(%rdi, %rsi)
	/* Restore rdi (dst).  */
	addq	%rsi, %rdi
	VPTESTN	%VMM(0), %VMM(0), %k0
	KMOV	%k0, %VRCX
	test	%VRCX, %VRCX
	jnz	L(zfill_vec1)

	VMOVU	%VMM(1), (VEC_SIZE * 2 + 0)(%rdi)
	KMOV	%k2, %VRCX
	test	%VRCX, %VRCX
	jnz	L(zfill_vec2)

	VMOVU	%VMM(2), (VEC_SIZE * 3 + 0)(%rdi)
	VPTESTN	%VMM(2), %VMM(2), %k0
	KMOV	%k0, %VRCX
	test	%VRCX, %VRCX
	jnz	L(zfill_vec3)

	VMOVU	%VMM(3), (VEC_SIZE * 4 + 0)(%rdi)
	KMOV	%k4, %VRCX
	// Zfill more....

	.p2align 4,, 4
L(zfill_vec4):
	subq	$(VEC_SIZE * -2), %rdi
	addq	$(CHAR_PER_VEC * -2), %rdx
L(zfill_vec2):
	subq	$(VEC_SIZE * -2), %rdi
	addq	$(CHAR_PER_VEC * -1), %rdx
L(zfill):
	/* VRCX must be non-zero.  */
	bsf	%VRCX, %VRCX

	/* Adjust length / dst for zfill.  */
	subq	%rcx, %rdx
# ifdef USE_AS_WCSCPY
	leaq	(%rdi, %rcx, CHAR_SIZE), %rdi
# else
	addq	%rcx, %rdi
# endif
# ifdef USE_AS_STPCPY
	movq	%rdi, %rax
# endif
L(zfill_from_page_cross):

	/* From here on out its just memset(rdi, 0, rdx).  */
	cmpq	$CHAR_PER_VEC, %rdx
	jb	L(zfill_less_vec)

L(zfill_more_1x_vec):
	VMOVU	%VZERO, (%rdi)
	VMOVU	%VZERO, (CHAR_SIZE - VEC_SIZE)(%rdi, %rdx, CHAR_SIZE)
	cmpq	$(CHAR_PER_VEC * 2 - 1), %rdx
	ja	L(zfill_more_2x_vec)
L(zfill_done0):
	ret

	/* Coming from vec1/vec2 we must be able to zfill at least 2x
	   VEC.  */
	.p2align 4,, 8
L(zfill_vec3):
	subq	$(VEC_SIZE * -2), %rdi
	addq	$(CHAR_PER_VEC * -2), %rdx
	.p2align 4,, 2
L(zfill_vec1):
	bsfq	%rcx, %rcx
	/* rdi is currently dst - VEC_SIZE so add back VEC_SIZE here.
	 */
	leaq	VEC_SIZE(%rdi, %rcx, CHAR_SIZE), %rdi
	subq	%rcx, %rdx
# ifdef USE_AS_STPCPY
	movq	%rdi, %rax
# endif


	VMOVU	%VZERO, (%rdi)
	VMOVU	%VZERO, (CHAR_SIZE - VEC_SIZE)(%rdi, %rdx, CHAR_SIZE)
	cmpq	$(CHAR_PER_VEC * 2), %rdx
	jb	L(zfill_done0)
L(zfill_more_2x_vec):
	VMOVU	%VZERO, (CHAR_SIZE - VEC_SIZE * 2)(%rdi, %rdx, CHAR_SIZE)
	VMOVU	%VZERO, (VEC_SIZE)(%rdi)
	subq	$(CHAR_PER_VEC * 4 - 1), %rdx
	jbe	L(zfill_done)

# ifdef USE_AS_WCSCPY
	leaq	(%rdi, %rdx, CHAR_SIZE), %rdx
# else
	addq	%rdi, %rdx
# endif

	VMOVU	%VZERO, (VEC_SIZE * 2)(%rdi)
	VMOVU	%VZERO, (VEC_SIZE * 3)(%rdi)


	VMOVU	%VZERO, (VEC_SIZE * 0 + 0)(%rdx)
	VMOVU	%VZERO, (VEC_SIZE * 1 + 0)(%rdx)

	subq	$-(VEC_SIZE * 4), %rdi
	cmpq	%rdi, %rdx
	jbe	L(zfill_done)

	/* Align rdi and zfill loop.  */
	andq	$-(VEC_SIZE), %rdi
	.p2align 4,, 12
L(zfill_loop_4x_vec):
	VMOVA	%VZERO, (VEC_SIZE * 0)(%rdi)
	VMOVA	%VZERO, (VEC_SIZE * 1)(%rdi)
	VMOVA	%VZERO, (VEC_SIZE * 2)(%rdi)
	VMOVA	%VZERO, (VEC_SIZE * 3)(%rdi)
	subq	$-(VEC_SIZE * 4), %rdi
	cmpq	%rdi, %rdx
	ja	L(zfill_loop_4x_vec)
L(zfill_done):
	ret


	/* Less 1x VEC case if we are not using evex masked store.  */
# if !USE_EVEX_MASKED_STORE
	.p2align 4,, 8
L(copy_1x):
	/* Special case for copy 1x. It can be handled quickly and many
	   buffer sizes have convenient alignment.  */
	VMOVU	%VMM(0), (%rdi)
	/* If no zeros then we are done.  */
	testl	%ecx, %ecx
	jz	L(ret_1x_1x)

	/* Need to zfill, not we know that length <= CHAR_PER_VEC so we
	   only handle the small case here.  */
	bsf	%VRCX, %VRCX
L(zfill_less_vec_no_bsf):
	/* Adjust length / dst then just zfill less_vec.  */
	subq	%rcx, %rdx
#  ifdef USE_AS_WCSCPY
	leaq	(%rdi, %rcx, CHAR_SIZE), %rdi
#  else
	addq	%rcx, %rdi
#  endif
#  ifdef USE_AS_STPCPY
	movq	%rdi, %rax
#  endif

L(zfill_less_vec):
	cmpl	$((VEC_SIZE / 2) / CHAR_SIZE), %edx
	jb	L(zfill_less_half)

	VMOVU	%VZERO_HALF, (%rdi)
	VMOVU	%VZERO_HALF, -((VEC_SIZE / 2)- CHAR_SIZE)(%rdi, %rdx, CHAR_SIZE)
	ret
#  ifdef USE_AS_STPCPY
L(ret_1x_1x):
	leaq	CHAR_SIZE(%rdi, %rdx, CHAR_SIZE), %rax
	ret
#  endif


#  if VEC_SIZE == 64
	.p2align 4,, 4
L(copy_32_63):
	/* Overfill to avoid branches.  */
	VMOVU	-(32 - CHAR_SIZE)(%rsi, %rdx, CHAR_SIZE), %VMM_256(1)
	VMOVU	%VMM_256(0), (%rdi)
	VMOVU	%VMM_256(1), -(32 - CHAR_SIZE)(%rdi, %rdx, CHAR_SIZE)

	/* We are taking advantage of the fact that to be here we must
	   be writing null-term as (%rdi, %rcx) we have a byte of lee-
	   way for overwriting.  */
	cmpl	%ecx, %edx
	ja	L(zfill_less_vec_no_bsf)
#   ifndef USE_AS_STPCPY
L(ret_1x_1x):
#   else
#    ifdef USE_AS_WCSCPY
	adcq	$0, %rdx
	leaq	(%rdi, %rdx, CHAR_SIZE), %rax
#    else
	movl	%edx, %eax
	adcq	%rdi, %rax
#    endif
#   endif
	ret
#  endif

	.p2align 4,, 4
L(copy_16_31):
	/* Overfill to avoid branches.  */
	vmovdqu	-(16 - CHAR_SIZE)(%rsi, %rdx, CHAR_SIZE), %xmm1
	VMOVU	%VMM_128(0), (%rdi)
	vmovdqu	%xmm1, -(16 - CHAR_SIZE)(%rdi, %rdx, CHAR_SIZE)
	cmpl	%ecx, %edx

	/* Seperate logic depending on VEC_SIZE. If VEC_SIZE == 64 then
	   we have a larger copy block for 32-63 so this is just falls
	   through to zfill 16-31. If VEC_SIZE == 32 then we check for
	   full zfill of less 1x VEC.  */
#  if VEC_SIZE == 64
	jbe	L(ret_16_31)
	subl	%ecx, %edx
#   ifdef USE_AS_WCSCPY
	leaq	(%rdi, %rcx, CHAR_SIZE), %rdi
#   else
	addq	%rcx, %rdi
#   endif
#   ifdef USE_AS_STPCPY
	movq	%rdi, %rax
#   endif
L(zfill_less_half):
L(zfill_less_32):
	cmpl	$(16 / CHAR_SIZE), %edx
	jb	L(zfill_less_16)
	VMOVU	%VZERO_128, (%rdi)
	VMOVU	%VZERO_128, -(16 - CHAR_SIZE)(%rdi, %rdx, CHAR_SIZE)
#   ifdef USE_AS_STPCPY
	ret
#   endif
L(ret_16_31):
#   ifdef USE_AS_STPCPY
#    ifdef USE_AS_WCSCPY
	adcq	$0, %rdx
	leaq	(%rdi, %rdx, CHAR_SIZE), %rax
#    else
	movl	%edx, %eax
	adcq	%rdi, %rax
#    endif
#   endif
	ret
#  else
	/* VEC_SIZE == 32 begins.  */
	ja	L(zfill_less_vec_no_bsf)
#   ifndef USE_AS_STPCPY
L(ret_1x_1x):
#   else
#    ifdef USE_AS_WCSCPY
	adcq	$0, %rdx
	leaq	(%rdi, %rdx, CHAR_SIZE), %rax
#    else
	movl	%edx, %eax
	adcq	%rdi, %rax
#    endif
#   endif
	ret
#  endif


	.p2align 4,, 4
L(copy_8_15):
	/* Overfill to avoid branches.  */
	movq	-(8 - CHAR_SIZE)(%rsi, %rdx, CHAR_SIZE), %rsi
	vmovq	%VMM_128(0), (%rdi)
	movq	%rsi, -(8 - CHAR_SIZE)(%rdi, %rdx, CHAR_SIZE)
	cmpl	%ecx, %edx
	jbe	L(ret_8_15)
	subl	%ecx, %edx
#  ifdef USE_AS_WCSCPY
	leaq	(%rdi, %rcx, CHAR_SIZE), %rdi
#  else
	addq	%rcx, %rdi
#  endif
#  ifdef USE_AS_STPCPY
	movq	%rdi, %rax
#  endif
	.p2align 4,, 8
#  if VEC_SIZE == 32
L(zfill_less_half):
#  endif
L(zfill_less_16):
	xorl	%ecx, %ecx
	cmpl	$(8 / CHAR_SIZE), %edx
	jb	L(zfill_less_8)
	movq	%rcx, (%rdi)
	movq	%rcx, -(8 - CHAR_SIZE)(%rdi, %rdx, CHAR_SIZE)
#  ifndef USE_AS_STPCPY
L(ret_8_15):
#  endif
	ret

	.p2align 4,, 8
L(less_1x_vec):
	je	L(copy_1x)

	/* We will need `tzcnt` result for all other copy sizes.  */
	tzcnt	%VRCX, %VRCX
#  if VEC_SIZE == 64
	cmpl	$(32 / CHAR_SIZE), %edx
	jae	L(copy_32_63)
#  endif

	cmpl	$(16 / CHAR_SIZE), %edx
	jae	L(copy_16_31)

	cmpl	$(8 / CHAR_SIZE), %edx
	jae	L(copy_8_15)
#  ifdef USE_AS_WCSCPY
	testl	%ecx, %ecx
	jz	L(zfill_less_8_set_ret)

	movl	(%rsi, %rdx, CHAR_SIZE), %esi
	vmovd	%VMM_128(0), (%rdi)
	movl	%esi, (%rdi, %rdx, CHAR_SIZE)
#   ifdef USE_AS_STPCPY
	cmpl	%ecx, %edx
L(ret_8_15):
	adcq	$0, %rdx
	leaq	(%rdi, %rdx, CHAR_SIZE), %rax
#   endif
	ret
L(zfill_less_8_set_ret):
	xorl	%ecx, %ecx
#   ifdef USE_AS_STPCPY
	movq	%rdi, %rax
#   endif
L(zfill_less_8):
	movl	%ecx, (%rdi)
	movl	%ecx, (%rdi, %rdx, CHAR_SIZE)
	ret
#  else
	cmpl	$3, %edx
	jb	L(copy_0_3)
	/* Overfill to avoid branches.  */
	movl	-3(%rsi, %rdx), %esi
	vmovd	%VMM_128(0), (%rdi)
	movl	%esi, -3(%rdi, %rdx)
	cmpl	%ecx, %edx
	jbe	L(ret_4_7)
	subq	%rcx, %rdx
	addq	%rcx, %rdi
#   ifdef USE_AS_STPCPY
	movq	%rdi, %rax
#   endif
	xorl	%ecx, %ecx
	.p2align 4,, 8
L(zfill_less_8):
	cmpl	$3, %edx
	jb	L(zfill_less_3)
	movl	%ecx, (%rdi)
	movl	%ecx, -3(%rdi, %rdx)
#   ifdef USE_AS_STPCPY
	ret
#   endif

L(ret_4_7):
#   ifdef USE_AS_STPCPY
L(ret_8_15):
	movl	%edx, %eax
	adcq	%rdi, %rax
#   endif
	ret

	.p2align 4,, 4
L(zfill_less_3):
	testl	%edx, %edx
	jz	L(zfill_1)
	movw	%cx, (%rdi)
L(zfill_1):
	movb	%cl, (%rdi, %rdx)
	ret

	.p2align 4,, 8
L(copy_0_3):
	vmovd	%VMM_128(0), %r8d
	testl	%edx, %edx
	jz	L(copy_1)
	movw	%r8w, (%rdi)
	cmpl	%ecx, %edx
	ja	L(zfill_from_1)
	movzbl	(%rsi, %rdx), %r8d
#   ifdef USE_AS_STPCPY
	movl	%edx, %eax
	adcq	%rdi, %rax
	movb	%r8b, (%rdi, %rdx)
	ret
#   endif

L(copy_1):
#   ifdef USE_AS_STPCPY
	movl	%edx, %eax
	cmpl	%ecx, %edx
	adcq	%rdi, %rax
#   endif
#   ifdef USE_AS_WCSCPY
	vmovd	%VMM_128(0), (%rdi)
#   else
	movb	%r8b, (%rdi, %rdx)
#   endif
	ret
#  endif


#  ifndef USE_AS_WCSCPY
	.p2align 4,, 8
L(zfill_from_1):
#   ifdef USE_AS_STPCPY
	leaq	(%rdi, %rcx), %rax
#   endif
	movw	$0, -1(%rdi, %rdx)
	ret
#  endif

	.p2align 4,, 4
L(zero_len):
	incq	%rdx
	jne	L(best_effort_strncpy)
	movq	%rdi, %rax
	ret
# endif


	.p2align 4,, 4
	.p2align 6,, 8
L(page_cross):
	movq	%rsi, %rax
	andq	$(VEC_SIZE * -1), %rax
	VPCMPEQ	(%rax), %VZERO, %k0
	KMOV	%k0, %VRCX
# ifdef USE_AS_WCSCPY
	movl	%esi, %r8d
	shrl	$2, %r8d
	andl	$(CHAR_PER_VEC - 1), %r8d
	shrx	%VR8, %VRCX, %VRCX
# else
	shrx	%VRSI, %VRCX, %VRCX
# endif

	/* Compute amount of bytes we checked.  */
	subl	%esi, %eax
	andl	$(VEC_SIZE - 1), %eax
# ifdef USE_AS_WCSCPY
	shrl	$2, %eax
# endif

	/* If rax > rdx then we are finishing the copy at the end of the
	   page.  */
	cmpq	%rax, %rdx
	jb	L(page_cross_small)


	/* If rcx is non-zero then continue.  */
	test	%VRCX, %VRCX
	jz	L(page_cross_continue)

	/* We found zero-CHAR so need to copy then zfill (we know we
	   didn't cover all of length here).  */
	bsf	%VRCX, %VRCX
L(movsb_and_zfill):
	incl	%ecx
	subq	%rcx, %rdx
# ifdef USE_AS_STPCPY
	leaq	-CHAR_SIZE(%rdi, %rcx, CHAR_SIZE), %rax
# else
	movq	%rdi, %rax
# endif

	REP_MOVS
# ifdef USE_AS_WCSCPY
	movl	$0, (%rdi)
# else
	movb	$0, (%rdi)
# endif
	jmp	L(zfill_from_page_cross)

L(page_cross_small):
	tzcnt	%VRCX, %VRCX
	cmpl	%ecx, %edx
	jbe	L(page_cross_copy_only)

	/* Do a zfill of the tail before copying.  */
	movq	%rdi, %r9
	xorl	%eax, %eax

	movl	%ecx, %r8d

	subl	%ecx, %edx
	leaq	CHAR_SIZE(%rdi, %rcx, CHAR_SIZE), %rdi
	movl	%edx, %ecx
	REP_STOS
	movq	%r9, %rdi
	movl	%r8d, %edx
L(page_cross_copy_only):
	leal	1(%rdx), %ecx
# ifdef USE_AS_STPCPY
#  ifdef USE_AS_WCSCPY
	adcl	$0, %edx
	leaq	(%rdi, %rdx, CHAR_SIZE), %rax
#  else
	movl	%edx, %eax
	adcq	%rdi, %rax
#  endif
# else
	movq	%rdi, %rax
# endif
	REP_MOVS
	ret


L(best_effort_strncpy):
	movq	%rdx, %rcx
	xorl	%eax, %eax
	movq	%rdi, %r8
	/* The length is >= 2^63. We very much so expect to segfault at
	   rep stos. If that doesn't happen then just strcpy to finish.
	 */
	REP_STOS
	movq	%r8, %rdi
	jmp	OVERFLOW_STRCPY
END(STRNCPY)
#endif