1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
|
/* memrchr optimized with SSE2.
Copyright (C) 2017-2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <isa-level.h>
/* MINIMUM_X86_ISA_LEVEL <= 2 because there is no V2 implementation
so we need this to build for ISA V2 builds. */
#if ISA_SHOULD_BUILD (2)
# ifndef MEMRCHR
# define MEMRCHR __memrchr_sse2
# endif
# include <sysdep.h>
# define VEC_SIZE 16
# define PAGE_SIZE 4096
.text
ENTRY_P2ALIGN(MEMRCHR, 6)
# ifdef __ILP32__
/* Clear upper bits. */
mov %RDX_LP, %RDX_LP
# endif
movd %esi, %xmm0
/* Get end pointer. */
leaq (%rdx, %rdi), %rcx
punpcklbw %xmm0, %xmm0
punpcklwd %xmm0, %xmm0
pshufd $0, %xmm0, %xmm0
/* Check if we can load 1x VEC without cross a page. */
testl $(PAGE_SIZE - VEC_SIZE), %ecx
jz L(page_cross)
/* NB: This load happens regardless of whether rdx (len) is zero. Since
it doesn't cross a page and the standard guarantees any pointer have
at least one-valid byte this load must be safe. For the entire
history of the x86 memrchr implementation this has been possible so
no code "should" be relying on a zero-length check before this load.
The zero-length check is moved to the page cross case because it is
1) pretty cold and including it pushes the hot case len <= VEC_SIZE
into 2-cache lines. */
movups -(VEC_SIZE)(%rcx), %xmm1
pcmpeqb %xmm0, %xmm1
pmovmskb %xmm1, %eax
subq $VEC_SIZE, %rdx
ja L(more_1x_vec)
L(ret_vec_x0_test):
/* Zero-flag set if eax (src) is zero. Destination unchanged if src is
zero. */
bsrl %eax, %eax
jz L(ret_0)
/* Check if the CHAR match is in bounds. Need to truly zero `eax` here
if out of bounds. */
addl %edx, %eax
jl L(zero_0)
/* Since we subtracted VEC_SIZE from rdx earlier we can just add to base
ptr. */
addq %rdi, %rax
L(ret_0):
ret
.p2align 4,, 5
L(ret_vec_x0):
bsrl %eax, %eax
leaq -(VEC_SIZE)(%rcx, %rax), %rax
ret
.p2align 4,, 2
L(zero_0):
xorl %eax, %eax
ret
.p2align 4,, 8
L(more_1x_vec):
testl %eax, %eax
jnz L(ret_vec_x0)
/* Align rcx (pointer to string). */
decq %rcx
andq $-VEC_SIZE, %rcx
movq %rcx, %rdx
/* NB: We could consistenyl save 1-byte in this pattern with `movaps
%xmm0, %xmm1; pcmpeq IMM8(r), %xmm1; ...`. The reason against it is
it adds more frontend uops (even if the moves can be eliminated) and
some percentage of the time actual backend uops. */
movaps -(VEC_SIZE)(%rcx), %xmm1
pcmpeqb %xmm0, %xmm1
subq %rdi, %rdx
pmovmskb %xmm1, %eax
cmpq $(VEC_SIZE * 2), %rdx
ja L(more_2x_vec)
L(last_2x_vec):
subl $VEC_SIZE, %edx
jbe L(ret_vec_x0_test)
testl %eax, %eax
jnz L(ret_vec_x0)
movaps -(VEC_SIZE * 2)(%rcx), %xmm1
pcmpeqb %xmm0, %xmm1
pmovmskb %xmm1, %eax
subl $VEC_SIZE, %edx
bsrl %eax, %eax
jz L(ret_1)
addl %edx, %eax
jl L(zero_0)
addq %rdi, %rax
L(ret_1):
ret
/* Don't align. Otherwise lose 2-byte encoding in jump to L(page_cross)
causes the hot pause (length <= VEC_SIZE) to span multiple cache
lines. Naturally aligned % 16 to 8-bytes. */
L(page_cross):
/* Zero length check. */
testq %rdx, %rdx
jz L(zero_0)
leaq -1(%rcx), %r8
andq $-(VEC_SIZE), %r8
movaps (%r8), %xmm1
pcmpeqb %xmm0, %xmm1
pmovmskb %xmm1, %esi
/* Shift out negative alignment (because we are starting from endptr and
working backwards). */
negl %ecx
/* 32-bit shift but VEC_SIZE=16 so need to mask the shift count
explicitly. */
andl $(VEC_SIZE - 1), %ecx
shl %cl, %esi
movzwl %si, %eax
leaq (%rdi, %rdx), %rcx
cmpq %rdi, %r8
ja L(more_1x_vec)
subl $VEC_SIZE, %edx
bsrl %eax, %eax
jz L(ret_2)
addl %edx, %eax
jl L(zero_1)
addq %rdi, %rax
L(ret_2):
ret
/* Fits in aliging bytes. */
L(zero_1):
xorl %eax, %eax
ret
.p2align 4,, 5
L(ret_vec_x1):
bsrl %eax, %eax
leaq -(VEC_SIZE * 2)(%rcx, %rax), %rax
ret
.p2align 4,, 8
L(more_2x_vec):
testl %eax, %eax
jnz L(ret_vec_x0)
movaps -(VEC_SIZE * 2)(%rcx), %xmm1
pcmpeqb %xmm0, %xmm1
pmovmskb %xmm1, %eax
testl %eax, %eax
jnz L(ret_vec_x1)
movaps -(VEC_SIZE * 3)(%rcx), %xmm1
pcmpeqb %xmm0, %xmm1
pmovmskb %xmm1, %eax
subq $(VEC_SIZE * 4), %rdx
ja L(more_4x_vec)
addl $(VEC_SIZE), %edx
jle L(ret_vec_x2_test)
L(last_vec):
testl %eax, %eax
jnz L(ret_vec_x2)
movaps -(VEC_SIZE * 4)(%rcx), %xmm1
pcmpeqb %xmm0, %xmm1
pmovmskb %xmm1, %eax
subl $(VEC_SIZE), %edx
bsrl %eax, %eax
jz L(ret_3)
addl %edx, %eax
jl L(zero_2)
addq %rdi, %rax
L(ret_3):
ret
.p2align 4,, 6
L(ret_vec_x2_test):
bsrl %eax, %eax
jz L(zero_2)
addl %edx, %eax
jl L(zero_2)
addq %rdi, %rax
ret
L(zero_2):
xorl %eax, %eax
ret
.p2align 4,, 5
L(ret_vec_x2):
bsrl %eax, %eax
leaq -(VEC_SIZE * 3)(%rcx, %rax), %rax
ret
.p2align 4,, 5
L(ret_vec_x3):
bsrl %eax, %eax
leaq -(VEC_SIZE * 4)(%rcx, %rax), %rax
ret
.p2align 4,, 8
L(more_4x_vec):
testl %eax, %eax
jnz L(ret_vec_x2)
movaps -(VEC_SIZE * 4)(%rcx), %xmm1
pcmpeqb %xmm0, %xmm1
pmovmskb %xmm1, %eax
testl %eax, %eax
jnz L(ret_vec_x3)
addq $-(VEC_SIZE * 4), %rcx
cmpq $(VEC_SIZE * 4), %rdx
jbe L(last_4x_vec)
/* Offset everything by 4x VEC_SIZE here to save a few bytes at the end
keeping the code from spilling to the next cache line. */
addq $(VEC_SIZE * 4 - 1), %rcx
andq $-(VEC_SIZE * 4), %rcx
leaq (VEC_SIZE * 4)(%rdi), %rdx
andq $-(VEC_SIZE * 4), %rdx
.p2align 4,, 11
L(loop_4x_vec):
movaps (VEC_SIZE * -1)(%rcx), %xmm1
movaps (VEC_SIZE * -2)(%rcx), %xmm2
movaps (VEC_SIZE * -3)(%rcx), %xmm3
movaps (VEC_SIZE * -4)(%rcx), %xmm4
pcmpeqb %xmm0, %xmm1
pcmpeqb %xmm0, %xmm2
pcmpeqb %xmm0, %xmm3
pcmpeqb %xmm0, %xmm4
por %xmm1, %xmm2
por %xmm3, %xmm4
por %xmm2, %xmm4
pmovmskb %xmm4, %esi
testl %esi, %esi
jnz L(loop_end)
addq $-(VEC_SIZE * 4), %rcx
cmpq %rdx, %rcx
jne L(loop_4x_vec)
subl %edi, %edx
/* Ends up being 1-byte nop. */
.p2align 4,, 2
L(last_4x_vec):
movaps -(VEC_SIZE)(%rcx), %xmm1
pcmpeqb %xmm0, %xmm1
pmovmskb %xmm1, %eax
cmpl $(VEC_SIZE * 2), %edx
jbe L(last_2x_vec)
testl %eax, %eax
jnz L(ret_vec_x0)
movaps -(VEC_SIZE * 2)(%rcx), %xmm1
pcmpeqb %xmm0, %xmm1
pmovmskb %xmm1, %eax
testl %eax, %eax
jnz L(ret_vec_end)
movaps -(VEC_SIZE * 3)(%rcx), %xmm1
pcmpeqb %xmm0, %xmm1
pmovmskb %xmm1, %eax
subl $(VEC_SIZE * 3), %edx
ja L(last_vec)
bsrl %eax, %eax
jz L(ret_4)
addl %edx, %eax
jl L(zero_3)
addq %rdi, %rax
L(ret_4):
ret
/* Ends up being 1-byte nop. */
.p2align 4,, 3
L(loop_end):
pmovmskb %xmm1, %eax
sall $16, %eax
jnz L(ret_vec_end)
pmovmskb %xmm2, %eax
testl %eax, %eax
jnz L(ret_vec_end)
pmovmskb %xmm3, %eax
/* Combine last 2 VEC matches. If ecx (VEC3) is zero (no CHAR in VEC3)
then it won't affect the result in esi (VEC4). If ecx is non-zero
then CHAR in VEC3 and bsrq will use that position. */
sall $16, %eax
orl %esi, %eax
bsrl %eax, %eax
leaq -(VEC_SIZE * 4)(%rcx, %rax), %rax
ret
L(ret_vec_end):
bsrl %eax, %eax
leaq (VEC_SIZE * -2)(%rax, %rcx), %rax
ret
/* Use in L(last_4x_vec). In the same cache line. This is just a spare
aligning bytes. */
L(zero_3):
xorl %eax, %eax
ret
/* 2-bytes from next cache line. */
END(MEMRCHR)
#endif
|