about summary refs log tree commit diff
path: root/sysdeps/x86_64/multiarch/memrchr-evex.S
blob: ea3a0a0a600d6e39333e3821f58208266c916054 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
/* memrchr optimized with 256-bit EVEX instructions.
   Copyright (C) 2021-2022 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include <isa-level.h>

#if ISA_SHOULD_BUILD (4)

# include <sysdep.h>
# include "evex256-vecs.h"
# if VEC_SIZE != 32
#  error "VEC_SIZE != 32 unimplemented"
# endif

# ifndef MEMRCHR
#  define MEMRCHR				__memrchr_evex
# endif

# define PAGE_SIZE			4096
# define VECMATCH			VEC(0)

	.section SECTION(.text), "ax", @progbits
ENTRY_P2ALIGN(MEMRCHR, 6)
# ifdef __ILP32__
	/* Clear upper bits.  */
	and	%RDX_LP, %RDX_LP
# else
	test	%RDX_LP, %RDX_LP
# endif
	jz	L(zero_0)

	/* Get end pointer. Minus one for two reasons. 1) It is necessary for a
	   correct page cross check and 2) it correctly sets up end ptr to be
	   subtract by lzcnt aligned.  */
	leaq	-1(%rdi, %rdx), %rax
	vpbroadcastb %esi, %VECMATCH

	/* Check if we can load 1x VEC without cross a page.  */
	testl	$(PAGE_SIZE - VEC_SIZE), %eax
	jz	L(page_cross)

	/* Don't use rax for pointer here because EVEX has better encoding with
	   offset % VEC_SIZE == 0.  */
	vpcmpb	$0, -(VEC_SIZE)(%rdi, %rdx), %VECMATCH, %k0
	kmovd	%k0, %ecx

	/* Fall through for rdx (len) <= VEC_SIZE (expect small sizes).  */
	cmpq	$VEC_SIZE, %rdx
	ja	L(more_1x_vec)
L(ret_vec_x0_test):

	/* If ecx is zero (no matches) lzcnt will set it 32 (VEC_SIZE) which
	   will guarantee edx (len) is less than it.  */
	lzcntl	%ecx, %ecx
	cmpl	%ecx, %edx
	jle	L(zero_0)
	subq	%rcx, %rax
	ret

	/* Fits in aligning bytes of first cache line.  */
L(zero_0):
	xorl	%eax, %eax
	ret

	.p2align 4,, 9
L(ret_vec_x0_dec):
	decq	%rax
L(ret_vec_x0):
	lzcntl	%ecx, %ecx
	subq	%rcx, %rax
	ret

	.p2align 4,, 10
L(more_1x_vec):
	testl	%ecx, %ecx
	jnz	L(ret_vec_x0)

	/* Align rax (pointer to string).  */
	andq	$-VEC_SIZE, %rax

	/* Recompute length after aligning.  */
	movq	%rax, %rdx

	/* Need no matter what.  */
	vpcmpb	$0, -(VEC_SIZE)(%rax), %VECMATCH, %k0
	kmovd	%k0, %ecx

	subq	%rdi, %rdx

	cmpq	$(VEC_SIZE * 2), %rdx
	ja	L(more_2x_vec)
L(last_2x_vec):

	/* Must dec rax because L(ret_vec_x0_test) expects it.  */
	decq	%rax
	cmpl	$VEC_SIZE, %edx
	jbe	L(ret_vec_x0_test)

	testl	%ecx, %ecx
	jnz	L(ret_vec_x0)

	/* Don't use rax for pointer here because EVEX has better encoding with
	   offset % VEC_SIZE == 0.  */
	vpcmpb	$0, -(VEC_SIZE * 2)(%rdi, %rdx), %VECMATCH, %k0
	kmovd	%k0, %ecx
	/* NB: 64-bit lzcnt. This will naturally add 32 to position.  */
	lzcntq	%rcx, %rcx
	cmpl	%ecx, %edx
	jle	L(zero_0)
	subq	%rcx, %rax
	ret

	/* Inexpensive place to put this regarding code size / target alignments
	   / ICache NLP. Necessary for 2-byte encoding of jump to page cross
	   case which in turn is necessary for hot path (len <= VEC_SIZE) to fit
	   in first cache line.  */
L(page_cross):
	movq	%rax, %rsi
	andq	$-VEC_SIZE, %rsi
	vpcmpb	$0, (%rsi), %VECMATCH, %k0
	kmovd	%k0, %r8d
	/* Shift out negative alignment (because we are starting from endptr and
	   working backwards).  */
	movl	%eax, %ecx
	/* notl because eax already has endptr - 1.  (-x = ~(x - 1)).  */
	notl	%ecx
	shlxl	%ecx, %r8d, %ecx
	cmpq	%rdi, %rsi
	ja	L(more_1x_vec)
	lzcntl	%ecx, %ecx
	cmpl	%ecx, %edx
	jle	L(zero_1)
	subq	%rcx, %rax
	ret

	/* Continue creating zero labels that fit in aligning bytes and get
	   2-byte encoding / are in the same cache line as condition.  */
L(zero_1):
	xorl	%eax, %eax
	ret

	.p2align 4,, 8
L(ret_vec_x1):
	/* This will naturally add 32 to position.  */
	bsrl	%ecx, %ecx
	leaq	-(VEC_SIZE * 2)(%rcx, %rax), %rax
	ret

	.p2align 4,, 8
L(more_2x_vec):
	testl	%ecx, %ecx
	jnz	L(ret_vec_x0_dec)

	vpcmpb	$0, -(VEC_SIZE * 2)(%rax), %VECMATCH, %k0
	kmovd	%k0, %ecx
	testl	%ecx, %ecx
	jnz	L(ret_vec_x1)

	/* Need no matter what.  */
	vpcmpb	$0, -(VEC_SIZE * 3)(%rax), %VECMATCH, %k0
	kmovd	%k0, %ecx

	subq	$(VEC_SIZE * 4), %rdx
	ja	L(more_4x_vec)

	cmpl	$(VEC_SIZE * -1), %edx
	jle	L(ret_vec_x2_test)
L(last_vec):
	testl	%ecx, %ecx
	jnz	L(ret_vec_x2)


	/* Need no matter what.  */
	vpcmpb	$0, -(VEC_SIZE * 4)(%rax), %VECMATCH, %k0
	kmovd	%k0, %ecx
	lzcntl	%ecx, %ecx
	subq	$(VEC_SIZE * 3 + 1), %rax
	subq	%rcx, %rax
	cmpq	%rax, %rdi
	ja	L(zero_1)
	ret

	.p2align 4,, 8
L(ret_vec_x2_test):
	lzcntl	%ecx, %ecx
	subq	$(VEC_SIZE * 2 + 1), %rax
	subq	%rcx, %rax
	cmpq	%rax, %rdi
	ja	L(zero_1)
	ret

	.p2align 4,, 8
L(ret_vec_x2):
	bsrl	%ecx, %ecx
	leaq	-(VEC_SIZE * 3)(%rcx, %rax), %rax
	ret

	.p2align 4,, 8
L(ret_vec_x3):
	bsrl	%ecx, %ecx
	leaq	-(VEC_SIZE * 4)(%rcx, %rax), %rax
	ret

	.p2align 4,, 8
L(more_4x_vec):
	testl	%ecx, %ecx
	jnz	L(ret_vec_x2)

	vpcmpb	$0, -(VEC_SIZE * 4)(%rax), %VECMATCH, %k0
	kmovd	%k0, %ecx

	testl	%ecx, %ecx
	jnz	L(ret_vec_x3)

	/* Check if near end before re-aligning (otherwise might do an
	   unnecessary loop iteration).  */
	addq	$-(VEC_SIZE * 4), %rax
	cmpq	$(VEC_SIZE * 4), %rdx
	jbe	L(last_4x_vec)

	decq	%rax
	andq	$-(VEC_SIZE * 4), %rax
	movq	%rdi, %rdx
	/* Get endptr for loop in rdx. NB: Can't just do while rax > rdi because
	   lengths that overflow can be valid and break the comparison.  */
	andq	$-(VEC_SIZE * 4), %rdx

	.p2align 4
L(loop_4x_vec):
	/* Store 1 were not-equals and 0 where equals in k1 (used to mask later
	   on).  */
	vpcmpb	$4, (VEC_SIZE * 3)(%rax), %VECMATCH, %k1

	/* VEC(2/3) will have zero-byte where we found a CHAR.  */
	vpxorq	(VEC_SIZE * 2)(%rax), %VECMATCH, %VEC(2)
	vpxorq	(VEC_SIZE * 1)(%rax), %VECMATCH, %VEC(3)
	vpcmpb	$0, (VEC_SIZE * 0)(%rax), %VECMATCH, %k4

	/* Combine VEC(2/3) with min and maskz with k1 (k1 has zero bit where
	   CHAR is found and VEC(2/3) have zero-byte where CHAR is found.  */
	vpminub	%VEC(2), %VEC(3), %VEC(3){%k1}{z}
	vptestnmb %VEC(3), %VEC(3), %k2

	/* Any 1s and we found CHAR.  */
	kortestd %k2, %k4
	jnz	L(loop_end)

	addq	$-(VEC_SIZE * 4), %rax
	cmpq	%rdx, %rax
	jne	L(loop_4x_vec)

	/* Need to re-adjust rdx / rax for L(last_4x_vec).  */
	subq	$-(VEC_SIZE * 4), %rdx
	movq	%rdx, %rax
	subl	%edi, %edx
L(last_4x_vec):

	/* Used no matter what.  */
	vpcmpb	$0, (VEC_SIZE * -1)(%rax), %VECMATCH, %k0
	kmovd	%k0, %ecx

	cmpl	$(VEC_SIZE * 2), %edx
	jbe	L(last_2x_vec)

	testl	%ecx, %ecx
	jnz	L(ret_vec_x0_dec)


	vpcmpb	$0, (VEC_SIZE * -2)(%rax), %VECMATCH, %k0
	kmovd	%k0, %ecx

	testl	%ecx, %ecx
	jnz	L(ret_vec_x1)

	/* Used no matter what.  */
	vpcmpb	$0, (VEC_SIZE * -3)(%rax), %VECMATCH, %k0
	kmovd	%k0, %ecx

	cmpl	$(VEC_SIZE * 3), %edx
	ja	L(last_vec)

	lzcntl	%ecx, %ecx
	subq	$(VEC_SIZE * 2 + 1), %rax
	subq	%rcx, %rax
	cmpq	%rax, %rdi
	jbe	L(ret_1)
	xorl	%eax, %eax
L(ret_1):
	ret

	.p2align 4,, 6
L(loop_end):
	kmovd	%k1, %ecx
	notl	%ecx
	testl	%ecx, %ecx
	jnz	L(ret_vec_x0_end)

	vptestnmb %VEC(2), %VEC(2), %k0
	kmovd	%k0, %ecx
	testl	%ecx, %ecx
	jnz	L(ret_vec_x1_end)

	kmovd	%k2, %ecx
	kmovd	%k4, %esi
	/* Combine last 2 VEC matches. If ecx (VEC3) is zero (no CHAR in VEC3)
	   then it won't affect the result in esi (VEC4). If ecx is non-zero
	   then CHAR in VEC3 and bsrq will use that position.  */
	salq	$32, %rcx
	orq	%rsi, %rcx
	bsrq	%rcx, %rcx
	addq	%rcx, %rax
	ret
	.p2align 4,, 4
L(ret_vec_x0_end):
	addq	$(VEC_SIZE), %rax
L(ret_vec_x1_end):
	bsrl	%ecx, %ecx
	leaq	(VEC_SIZE * 2)(%rax, %rcx), %rax
	ret

END(MEMRCHR)
#endif