about summary refs log tree commit diff
path: root/sysdeps/x86_64/multiarch/memcmpeq-evex.S
blob: 41124ef1d3a65ca4796cf9ca8df816d444610a1d (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
/* __memcmpeq optimized with EVEX.
   Copyright (C) 2017-2022 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include <isa-level.h>

#if ISA_SHOULD_BUILD (4)

/* __memcmpeq is implemented as:
   1. Use ymm vector compares when possible. The only case where
      vector compares is not possible for when size < VEC_SIZE
      and loading from either s1 or s2 would cause a page cross.
   2. Use xmm vector compare when size >= 8 bytes.
   3. Optimistically compare up to first 4 * VEC_SIZE one at a
      to check for early mismatches. Only do this if its guranteed the
      work is not wasted.
   4. If size is 8 * VEC_SIZE or less, unroll the loop.
   5. Compare 4 * VEC_SIZE at a time with the aligned first memory
      area.
   6. Use 2 vector compares when size is 2 * VEC_SIZE or less.
   7. Use 4 vector compares when size is 4 * VEC_SIZE or less.
   8. Use 8 vector compares when size is 8 * VEC_SIZE or less.  */

# include <sysdep.h>

# ifndef MEMCMPEQ
#  define MEMCMPEQ	__memcmpeq_evex
# endif

# define VMOVU_MASK	vmovdqu8
# define VMOVU	vmovdqu64
# define VPCMP	vpcmpub
# define VPTEST	vptestmb

# define VEC_SIZE	32
# define PAGE_SIZE	4096

# define YMM0		ymm16
# define YMM1		ymm17
# define YMM2		ymm18
# define YMM3		ymm19
# define YMM4		ymm20
# define YMM5		ymm21
# define YMM6		ymm22


	.section .text.evex, "ax", @progbits
ENTRY_P2ALIGN (MEMCMPEQ, 6)
# ifdef __ILP32__
	/* Clear the upper 32 bits.  */
	movl	%edx, %edx
# endif
	cmp	$VEC_SIZE, %RDX_LP
	/* Fall through for [0, VEC_SIZE] as its the hottest.  */
	ja	L(more_1x_vec)

	/* Create mask of bytes that are guranteed to be valid because
	   of length (edx). Using masked movs allows us to skip checks for
	   page crosses/zero size.  */
	movl	$-1, %ecx
	bzhil	%edx, %ecx, %ecx
	kmovd	%ecx, %k2

	/* Use masked loads as VEC_SIZE could page cross where length
	   (edx) would not.  */
	VMOVU_MASK (%rsi), %YMM2{%k2}
	VPCMP	$4,(%rdi), %YMM2, %k1{%k2}
	kmovd	%k1, %eax
	ret


L(last_1x_vec):
	VMOVU	-(VEC_SIZE * 1)(%rsi, %rdx), %YMM1
	VPCMP	$4, -(VEC_SIZE * 1)(%rdi, %rdx), %YMM1, %k1
	kmovd	%k1, %eax
L(return_neq0):
	ret



	.p2align 4
L(more_1x_vec):
	/* From VEC + 1 to 2 * VEC.  */
	VMOVU	(%rsi), %YMM1
	/* Use compare not equals to directly check for mismatch.  */
	VPCMP	$4,(%rdi), %YMM1, %k1
	kmovd	%k1, %eax
	testl	%eax, %eax
	jnz	L(return_neq0)

	cmpq	$(VEC_SIZE * 2), %rdx
	jbe	L(last_1x_vec)

	/* Check second VEC no matter what.  */
	VMOVU	VEC_SIZE(%rsi), %YMM2
	VPCMP	$4, VEC_SIZE(%rdi), %YMM2, %k1
	kmovd	%k1, %eax
	testl	%eax, %eax
	jnz	L(return_neq0)

	/* Less than 4 * VEC.  */
	cmpq	$(VEC_SIZE * 4), %rdx
	jbe	L(last_2x_vec)

	/* Check third and fourth VEC no matter what.  */
	VMOVU	(VEC_SIZE * 2)(%rsi), %YMM3
	VPCMP	$4,(VEC_SIZE * 2)(%rdi), %YMM3, %k1
	kmovd	%k1, %eax
	testl	%eax, %eax
	jnz	L(return_neq0)

	VMOVU	(VEC_SIZE * 3)(%rsi), %YMM4
	VPCMP	$4,(VEC_SIZE * 3)(%rdi), %YMM4, %k1
	kmovd	%k1, %eax
	testl	%eax, %eax
	jnz	L(return_neq0)

	/* Go to 4x VEC loop.  */
	cmpq	$(VEC_SIZE * 8), %rdx
	ja	L(more_8x_vec)

	/* Handle remainder of size = 4 * VEC + 1 to 8 * VEC without any
	   branches.  */

	VMOVU	-(VEC_SIZE * 4)(%rsi, %rdx), %YMM1
	VMOVU	-(VEC_SIZE * 3)(%rsi, %rdx), %YMM2
	addq	%rdx, %rdi

	/* Wait to load from s1 until addressed adjust due to
	   unlamination.  */

	/* vpxor will be all 0s if s1 and s2 are equal. Otherwise it
	   will have some 1s.  */
	vpxorq	-(VEC_SIZE * 4)(%rdi), %YMM1, %YMM1
	/* Ternary logic to xor -(VEC_SIZE * 3)(%rdi) with YMM2 while
	   oring with YMM1. Result is stored in YMM1.  */
	vpternlogd $0xde, -(VEC_SIZE * 3)(%rdi), %YMM1, %YMM2

	VMOVU	-(VEC_SIZE * 2)(%rsi, %rdx), %YMM3
	vpxorq	-(VEC_SIZE * 2)(%rdi), %YMM3, %YMM3
	/* Or together YMM1, YMM2, and YMM3 into YMM3.  */
	VMOVU	-(VEC_SIZE)(%rsi, %rdx), %YMM4
	vpxorq	-(VEC_SIZE)(%rdi), %YMM4, %YMM4

	/* Or together YMM2, YMM3, and YMM4 into YMM4.  */
	vpternlogd $0xfe, %YMM2, %YMM3, %YMM4

	/* Compare YMM4 with 0. If any 1s s1 and s2 don't match.  */
	VPTEST	%YMM4, %YMM4, %k1
	kmovd	%k1, %eax
	ret

	.p2align 4
L(more_8x_vec):
	/* Set end of s1 in rdx.  */
	leaq	-(VEC_SIZE * 4)(%rdi, %rdx), %rdx
	/* rsi stores s2 - s1. This allows loop to only update one
	   pointer.  */
	subq	%rdi, %rsi
	/* Align s1 pointer.  */
	andq	$-VEC_SIZE, %rdi
	/* Adjust because first 4x vec where check already.  */
	subq	$-(VEC_SIZE * 4), %rdi
	.p2align 4
L(loop_4x_vec):
	VMOVU	(%rsi, %rdi), %YMM1
	vpxorq	(%rdi), %YMM1, %YMM1

	VMOVU	VEC_SIZE(%rsi, %rdi), %YMM2
	vpternlogd $0xde,(VEC_SIZE)(%rdi), %YMM1, %YMM2

	VMOVU	(VEC_SIZE * 2)(%rsi, %rdi), %YMM3
	vpxorq	(VEC_SIZE * 2)(%rdi), %YMM3, %YMM3

	VMOVU	(VEC_SIZE * 3)(%rsi, %rdi), %YMM4
	vpxorq	(VEC_SIZE * 3)(%rdi), %YMM4, %YMM4

	vpternlogd $0xfe, %YMM2, %YMM3, %YMM4
	VPTEST	%YMM4, %YMM4, %k1
	kmovd	%k1, %eax
	testl	%eax, %eax
	jnz	L(return_neq2)
	subq	$-(VEC_SIZE * 4), %rdi
	cmpq	%rdx, %rdi
	jb	L(loop_4x_vec)

	subq	%rdx, %rdi
	VMOVU	(VEC_SIZE * 3)(%rsi, %rdx), %YMM4
	vpxorq	(VEC_SIZE * 3)(%rdx), %YMM4, %YMM4
	/* rdi has 4 * VEC_SIZE - remaining length.  */
	cmpl	$(VEC_SIZE * 3), %edi
	jae	L(8x_last_1x_vec)
	/* Load regardless of branch.  */
	VMOVU	(VEC_SIZE * 2)(%rsi, %rdx), %YMM3
	/* Ternary logic to xor (VEC_SIZE * 2)(%rdx) with YMM3 while
	   oring with YMM4. Result is stored in YMM4.  */
	vpternlogd $0xf6,(VEC_SIZE * 2)(%rdx), %YMM3, %YMM4
	cmpl	$(VEC_SIZE * 2), %edi
	jae	L(8x_last_2x_vec)

	VMOVU	VEC_SIZE(%rsi, %rdx), %YMM2
	vpxorq	VEC_SIZE(%rdx), %YMM2, %YMM2

	VMOVU	(%rsi, %rdx), %YMM1
	vpxorq	(%rdx), %YMM1, %YMM1

	vpternlogd $0xfe, %YMM1, %YMM2, %YMM4
L(8x_last_1x_vec):
L(8x_last_2x_vec):
	VPTEST	%YMM4, %YMM4, %k1
	kmovd	%k1, %eax
L(return_neq2):
	ret

	.p2align 4,, 8
L(last_2x_vec):
	VMOVU	-(VEC_SIZE * 2)(%rsi, %rdx), %YMM1
	vpxorq	-(VEC_SIZE * 2)(%rdi, %rdx), %YMM1, %YMM1
	VMOVU	-(VEC_SIZE * 1)(%rsi, %rdx), %YMM2
	vpternlogd $0xde, -(VEC_SIZE * 1)(%rdi, %rdx), %YMM1, %YMM2
	VPTEST	%YMM2, %YMM2, %k1
	kmovd	%k1, %eax
	ret

    /* 1 Bytes from next cache line. */
END (MEMCMPEQ)
#endif