1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
|
/* __memcmpeq optimized with AVX2.
Copyright (C) 2017-2022 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <isa-level.h>
#if ISA_SHOULD_BUILD (3)
/* __memcmpeq is implemented as:
1. Use ymm vector compares when possible. The only case where
vector compares is not possible for when size < VEC_SIZE
and loading from either s1 or s2 would cause a page cross.
2. Use xmm vector compare when size >= 8 bytes.
3. Optimistically compare up to first 4 * VEC_SIZE one at a
to check for early mismatches. Only do this if its guranteed the
work is not wasted.
4. If size is 8 * VEC_SIZE or less, unroll the loop.
5. Compare 4 * VEC_SIZE at a time with the aligned first memory
area.
6. Use 2 vector compares when size is 2 * VEC_SIZE or less.
7. Use 4 vector compares when size is 4 * VEC_SIZE or less.
8. Use 8 vector compares when size is 8 * VEC_SIZE or less. */
# include <sysdep.h>
# ifndef MEMCMPEQ
# define MEMCMPEQ __memcmpeq_avx2
# endif
# define VPCMPEQ vpcmpeqb
# ifndef VZEROUPPER
# define VZEROUPPER vzeroupper
# endif
# ifndef SECTION
# define SECTION(p) p##.avx
# endif
# define VEC_SIZE 32
# define PAGE_SIZE 4096
.section SECTION(.text), "ax", @progbits
ENTRY_P2ALIGN (MEMCMPEQ, 6)
# ifdef __ILP32__
/* Clear the upper 32 bits. */
movl %edx, %edx
# endif
cmp $VEC_SIZE, %RDX_LP
jb L(less_vec)
/* From VEC to 2 * VEC. No branch when size == VEC_SIZE. */
vmovdqu (%rsi), %ymm1
VPCMPEQ (%rdi), %ymm1, %ymm1
vpmovmskb %ymm1, %eax
incl %eax
jnz L(return_neq0)
cmpq $(VEC_SIZE * 2), %rdx
jbe L(last_1x_vec)
/* Check second VEC no matter what. */
vmovdqu VEC_SIZE(%rsi), %ymm2
VPCMPEQ VEC_SIZE(%rdi), %ymm2, %ymm2
vpmovmskb %ymm2, %eax
/* If all 4 VEC where equal eax will be all 1s so incl will overflow
and set zero flag. */
incl %eax
jnz L(return_neq0)
/* Less than 4 * VEC. */
cmpq $(VEC_SIZE * 4), %rdx
jbe L(last_2x_vec)
/* Check third and fourth VEC no matter what. */
vmovdqu (VEC_SIZE * 2)(%rsi), %ymm3
VPCMPEQ (VEC_SIZE * 2)(%rdi), %ymm3, %ymm3
vpmovmskb %ymm3, %eax
incl %eax
jnz L(return_neq0)
vmovdqu (VEC_SIZE * 3)(%rsi), %ymm4
VPCMPEQ (VEC_SIZE * 3)(%rdi), %ymm4, %ymm4
vpmovmskb %ymm4, %eax
incl %eax
jnz L(return_neq0)
/* Go to 4x VEC loop. */
cmpq $(VEC_SIZE * 8), %rdx
ja L(more_8x_vec)
/* Handle remainder of size = 4 * VEC + 1 to 8 * VEC without any
branches. */
/* Adjust rsi and rdi to avoid indexed address mode. This end up
saving a 16 bytes of code, prevents unlamination, and bottlenecks in
the AGU. */
addq %rdx, %rsi
vmovdqu -(VEC_SIZE * 4)(%rsi), %ymm1
vmovdqu -(VEC_SIZE * 3)(%rsi), %ymm2
addq %rdx, %rdi
VPCMPEQ -(VEC_SIZE * 4)(%rdi), %ymm1, %ymm1
VPCMPEQ -(VEC_SIZE * 3)(%rdi), %ymm2, %ymm2
vmovdqu -(VEC_SIZE * 2)(%rsi), %ymm3
VPCMPEQ -(VEC_SIZE * 2)(%rdi), %ymm3, %ymm3
vmovdqu -VEC_SIZE(%rsi), %ymm4
VPCMPEQ -VEC_SIZE(%rdi), %ymm4, %ymm4
/* Reduce VEC0 - VEC4. */
vpand %ymm1, %ymm2, %ymm2
vpand %ymm3, %ymm4, %ymm4
vpand %ymm2, %ymm4, %ymm4
vpmovmskb %ymm4, %eax
incl %eax
L(return_neq0):
L(return_vzeroupper):
ZERO_UPPER_VEC_REGISTERS_RETURN
/* NB: p2align 5 here will ensure the L(loop_4x_vec) is also 32 byte
aligned. */
.p2align 5
L(less_vec):
/* Check if one or less char. This is necessary for size = 0 but is
also faster for size = 1. */
cmpl $1, %edx
jbe L(one_or_less)
/* Check if loading one VEC from either s1 or s2 could cause a page
cross. This can have false positives but is by far the fastest
method. */
movl %edi, %eax
orl %esi, %eax
andl $(PAGE_SIZE - 1), %eax
cmpl $(PAGE_SIZE - VEC_SIZE), %eax
jg L(page_cross_less_vec)
/* No page cross possible. */
vmovdqu (%rsi), %ymm2
VPCMPEQ (%rdi), %ymm2, %ymm2
vpmovmskb %ymm2, %eax
incl %eax
/* Result will be zero if s1 and s2 match. Otherwise first set bit
will be first mismatch. */
bzhil %edx, %eax, %eax
VZEROUPPER_RETURN
/* Relatively cold but placing close to L(less_vec) for 2 byte jump
encoding. */
.p2align 4
L(one_or_less):
jb L(zero)
movzbl (%rsi), %ecx
movzbl (%rdi), %eax
subl %ecx, %eax
/* No ymm register was touched. */
ret
/* Within the same 16 byte block is L(one_or_less). */
L(zero):
xorl %eax, %eax
ret
.p2align 4
L(last_1x_vec):
vmovdqu -(VEC_SIZE * 1)(%rsi, %rdx), %ymm1
VPCMPEQ -(VEC_SIZE * 1)(%rdi, %rdx), %ymm1, %ymm1
vpmovmskb %ymm1, %eax
incl %eax
VZEROUPPER_RETURN
.p2align 4
L(last_2x_vec):
vmovdqu -(VEC_SIZE * 2)(%rsi, %rdx), %ymm1
VPCMPEQ -(VEC_SIZE * 2)(%rdi, %rdx), %ymm1, %ymm1
vmovdqu -(VEC_SIZE * 1)(%rsi, %rdx), %ymm2
VPCMPEQ -(VEC_SIZE * 1)(%rdi, %rdx), %ymm2, %ymm2
vpand %ymm1, %ymm2, %ymm2
vpmovmskb %ymm2, %eax
incl %eax
VZEROUPPER_RETURN
.p2align 4
L(more_8x_vec):
/* Set end of s1 in rdx. */
leaq -(VEC_SIZE * 4)(%rdi, %rdx), %rdx
/* rsi stores s2 - s1. This allows loop to only update one pointer.
*/
subq %rdi, %rsi
/* Align s1 pointer. */
andq $-VEC_SIZE, %rdi
/* Adjust because first 4x vec where check already. */
subq $-(VEC_SIZE * 4), %rdi
.p2align 4
L(loop_4x_vec):
/* rsi has s2 - s1 so get correct address by adding s1 (in rdi). */
vmovdqu (%rsi, %rdi), %ymm1
VPCMPEQ (%rdi), %ymm1, %ymm1
vmovdqu VEC_SIZE(%rsi, %rdi), %ymm2
VPCMPEQ VEC_SIZE(%rdi), %ymm2, %ymm2
vmovdqu (VEC_SIZE * 2)(%rsi, %rdi), %ymm3
VPCMPEQ (VEC_SIZE * 2)(%rdi), %ymm3, %ymm3
vmovdqu (VEC_SIZE * 3)(%rsi, %rdi), %ymm4
VPCMPEQ (VEC_SIZE * 3)(%rdi), %ymm4, %ymm4
vpand %ymm1, %ymm2, %ymm2
vpand %ymm3, %ymm4, %ymm4
vpand %ymm2, %ymm4, %ymm4
vpmovmskb %ymm4, %eax
incl %eax
jnz L(return_neq1)
subq $-(VEC_SIZE * 4), %rdi
/* Check if s1 pointer at end. */
cmpq %rdx, %rdi
jb L(loop_4x_vec)
vmovdqu (VEC_SIZE * 3)(%rsi, %rdx), %ymm4
VPCMPEQ (VEC_SIZE * 3)(%rdx), %ymm4, %ymm4
subq %rdx, %rdi
/* rdi has 4 * VEC_SIZE - remaining length. */
cmpl $(VEC_SIZE * 3), %edi
jae L(8x_last_1x_vec)
/* Load regardless of branch. */
vmovdqu (VEC_SIZE * 2)(%rsi, %rdx), %ymm3
VPCMPEQ (VEC_SIZE * 2)(%rdx), %ymm3, %ymm3
cmpl $(VEC_SIZE * 2), %edi
jae L(8x_last_2x_vec)
/* Check last 4 VEC. */
vmovdqu VEC_SIZE(%rsi, %rdx), %ymm1
VPCMPEQ VEC_SIZE(%rdx), %ymm1, %ymm1
vmovdqu (%rsi, %rdx), %ymm2
VPCMPEQ (%rdx), %ymm2, %ymm2
vpand %ymm3, %ymm4, %ymm4
vpand %ymm1, %ymm2, %ymm3
L(8x_last_2x_vec):
vpand %ymm3, %ymm4, %ymm4
L(8x_last_1x_vec):
vpmovmskb %ymm4, %eax
/* Restore s1 pointer to rdi. */
incl %eax
L(return_neq1):
VZEROUPPER_RETURN
/* Relatively cold case as page cross are unexpected. */
.p2align 4
L(page_cross_less_vec):
cmpl $16, %edx
jae L(between_16_31)
cmpl $8, %edx
ja L(between_9_15)
cmpl $4, %edx
jb L(between_2_3)
/* From 4 to 8 bytes. No branch when size == 4. */
movl (%rdi), %eax
subl (%rsi), %eax
movl -4(%rdi, %rdx), %ecx
movl -4(%rsi, %rdx), %edi
subl %edi, %ecx
orl %ecx, %eax
ret
.p2align 4,, 8
L(between_16_31):
/* From 16 to 31 bytes. No branch when size == 16. */
/* Safe to use xmm[0, 15] as no vzeroupper is needed so RTM safe.
*/
vmovdqu (%rsi), %xmm1
vpcmpeqb (%rdi), %xmm1, %xmm1
vmovdqu -16(%rsi, %rdx), %xmm2
vpcmpeqb -16(%rdi, %rdx), %xmm2, %xmm2
vpand %xmm1, %xmm2, %xmm2
vpmovmskb %xmm2, %eax
notw %ax
/* No ymm register was touched. */
ret
.p2align 4,, 8
L(between_9_15):
/* From 9 to 15 bytes. */
movq (%rdi), %rax
subq (%rsi), %rax
movq -8(%rdi, %rdx), %rcx
movq -8(%rsi, %rdx), %rdi
subq %rdi, %rcx
orq %rcx, %rax
/* edx is guranteed to be a non-zero int. */
cmovnz %edx, %eax
ret
/* Don't align. This is cold and aligning here will cause code
to spill into next cache line. */
L(between_2_3):
/* From 2 to 3 bytes. No branch when size == 2. */
movzwl (%rdi), %eax
movzwl (%rsi), %ecx
subl %ecx, %eax
movzbl -1(%rdi, %rdx), %ecx
/* All machines that support evex will insert a "merging uop"
avoiding any serious partial register stalls. */
subb -1(%rsi, %rdx), %cl
orl %ecx, %eax
/* No ymm register was touched. */
ret
/* 2 Bytes from next cache line. */
END (MEMCMPEQ)
#endif
|