1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
|
/* memcmp/wmemcmp optimized with 256-bit EVEX instructions.
Copyright (C) 2021-2023 Free Software Foundation, Inc.
This file is part of the GNU C Library.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library; if not, see
<https://www.gnu.org/licenses/>. */
#include <isa-level.h>
#if ISA_SHOULD_BUILD (4)
/* memcmp/wmemcmp is implemented as:
1. Use ymm vector compares when possible. The only case where
vector compares is not possible for when size < CHAR_PER_VEC
and loading from either s1 or s2 would cause a page cross.
2. For size from 2 to 7 bytes on page cross, load as big endian
with movbe and bswap to avoid branches.
3. Use xmm vector compare when size >= 4 bytes for memcmp or
size >= 8 bytes for wmemcmp.
4. Optimistically compare up to first 4 * CHAR_PER_VEC one at a
to check for early mismatches. Only do this if its guaranteed the
work is not wasted.
5. If size is 8 * VEC_SIZE or less, unroll the loop.
6. Compare 4 * VEC_SIZE at a time with the aligned first memory
area.
7. Use 2 vector compares when size is 2 * CHAR_PER_VEC or less.
8. Use 4 vector compares when size is 4 * CHAR_PER_VEC or less.
9. Use 8 vector compares when size is 8 * CHAR_PER_VEC or less.
When possible the implementation tries to optimize for frontend in the
following ways:
Throughput:
1. All code sections that fit are able to run optimally out of the
LSD.
2. All code sections that fit are able to run optimally out of the
DSB
3. Basic blocks are contained in minimum number of fetch blocks
necessary.
Latency:
1. Logically connected basic blocks are put in the same
cache-line.
2. Logically connected basic blocks that do not fit in the same
cache-line are put in adjacent lines. This can get beneficial
L2 spatial prefetching and L1 next-line prefetching. */
# include <sysdep.h>
# ifndef MEMCMP
# define MEMCMP __memcmp_evex_movbe
# endif
# ifndef VEC_SIZE
# include "x86-evex256-vecs.h"
# endif
# ifdef USE_AS_WMEMCMP
# define VMOVU_MASK vmovdqu32
# define CHAR_SIZE 4
# define VPCMP vpcmpd
# define VPCMPEQ vpcmpeqd
# define VPTEST vptestmd
# define USE_WIDE_CHAR
# else
# define VMOVU_MASK vmovdqu8
# define CHAR_SIZE 1
# define VPCMP vpcmpub
# define VPCMPEQ vpcmpeqb
# define VPTEST vptestmb
# endif
# include "reg-macros.h"
# define PAGE_SIZE 4096
# define CHAR_PER_VEC (VEC_SIZE / CHAR_SIZE)
/* Warning!
wmemcmp has to use SIGNED comparison for elements.
memcmp has to use UNSIGNED comparison for elements.
*/
.section SECTION(.text), "ax", @progbits
/* Cache align memcmp entry. This allows for much more thorough
frontend optimization. */
ENTRY_P2ALIGN (MEMCMP, 6)
# ifdef __ILP32__
/* Clear the upper 32 bits. */
movl %edx, %edx
# endif
cmp $CHAR_PER_VEC, %RDX_LP
/* Fall through for [0, VEC_SIZE] as its the hottest. */
ja L(more_1x_vec)
/* Create mask of bytes that are guaranteed to be valid because
of length (edx). Using masked movs allows us to skip checks
for page crosses/zero size. */
mov $-1, %VRAX
bzhi %VRDX, %VRAX, %VRAX
/* NB: A `jz` might be useful here. Page-faults that are
invalidated by predicate execution (the evex mask) can be
very slow. The expectation is this is not the norm so and
"most" code will not regularly call 'memcmp' with length = 0
and memory that is not wired up. */
KMOV %VRAX, %k2
/* Safe to load full ymm with mask. */
VMOVU_MASK (%rsi), %VMM(2){%k2}{z}
/* Slightly different method for VEC_SIZE == 64 to save a bit of
code size. This allows us to fit L(return_vec_0) entirely in
the first cache line. */
# if VEC_SIZE == 64
VPCMPEQ (%rdi), %VMM(2), %k1{%k2}
KMOV %k1, %VRCX
sub %VRCX, %VRAX
# else
VPCMP $4, (%rdi), %VMM(2), %k1{%k2}
KMOV %k1, %VRAX
test %VRAX, %VRAX
# endif
jnz L(return_vec_0)
ret
.p2align 4,, 11
L(return_vec_0):
bsf %VRAX, %VRAX
# ifdef USE_AS_WMEMCMP
movl (%rdi, %rax, CHAR_SIZE), %ecx
xorl %edx, %edx
cmpl (%rsi, %rax, CHAR_SIZE), %ecx
/* NB: no partial register stall here because xorl zero idiom
above. */
setg %dl
leal -1(%rdx, %rdx), %eax
# else
movzbl (%rsi, %rax), %ecx
# if VEC_SIZE == 64
movb (%rdi, %rax), %al
# else
movzbl (%rdi, %rax), %eax
# endif
subl %ecx, %eax
# endif
ret
.p2align 4,, 11
L(more_1x_vec):
/* From VEC to 2 * VEC. No branch when size == VEC_SIZE. */
VMOVU (%rsi), %VMM(1)
/* Use compare not equals to directly check for mismatch. */
VPCMP $4, (%rdi), %VMM(1), %k1
KMOV %k1, %VRAX
/* NB: eax must be destination register if going to
L(return_vec_[0,2]). For L(return_vec_3) destination
register must be ecx. */
test %VRAX, %VRAX
jnz L(return_vec_0)
cmpq $(CHAR_PER_VEC * 2), %rdx
jbe L(last_1x_vec)
/* Check second VEC no matter what. */
VMOVU VEC_SIZE(%rsi), %VMM(2)
VPCMP $4, VEC_SIZE(%rdi), %VMM(2), %k1
KMOV %k1, %VRAX
test %VRAX, %VRAX
jnz L(return_vec_1)
/* Less than 4 * VEC. */
cmpq $(CHAR_PER_VEC * 4), %rdx
jbe L(last_2x_vec)
/* Check third and fourth VEC no matter what. */
VMOVU (VEC_SIZE * 2)(%rsi), %VMM(3)
VPCMP $4, (VEC_SIZE * 2)(%rdi), %VMM(3), %k1
KMOV %k1, %VRAX
test %VRAX, %VRAX
jnz L(return_vec_2)
VMOVU (VEC_SIZE * 3)(%rsi), %VMM(4)
VPCMP $4, (VEC_SIZE * 3)(%rdi), %VMM(4), %k1
KMOV %k1, %VRCX
test %VRCX, %VRCX
jnz L(return_vec_3)
/* Go to 4x VEC loop. */
cmpq $(CHAR_PER_VEC * 8), %rdx
ja L(more_8x_vec)
/* Handle remainder of size = 4 * VEC + 1 to 8 * VEC without any
branches. */
/* Load first two VEC from s2 before adjusting addresses. */
VMOVU -(VEC_SIZE * 4)(%rsi, %rdx, CHAR_SIZE), %VMM(1)
VMOVU -(VEC_SIZE * 3)(%rsi, %rdx, CHAR_SIZE), %VMM(2)
leaq -(4 * VEC_SIZE)(%rdi, %rdx, CHAR_SIZE), %rdi
leaq -(4 * VEC_SIZE)(%rsi, %rdx, CHAR_SIZE), %rsi
/* Wait to load from s1 until addressed adjust due to
unlamination of microfusion with complex address mode. */
/* vpxor will be all 0s if s1 and s2 are equal. Otherwise it
will have some 1s. */
vpxorq (%rdi), %VMM(1), %VMM(1)
vpxorq (VEC_SIZE)(%rdi), %VMM(2), %VMM(2)
VMOVU (VEC_SIZE * 2)(%rsi), %VMM(3)
vpxorq (VEC_SIZE * 2)(%rdi), %VMM(3), %VMM(3)
VMOVU (VEC_SIZE * 3)(%rsi), %VMM(4)
/* Ternary logic to xor (VEC_SIZE * 3)(%rdi) with VEC(4) while
oring with VEC(1). Result is stored in VEC(4). */
vpternlogd $0xde, (VEC_SIZE * 3)(%rdi), %VMM(1), %VMM(4)
/* Or together VEC(2), VEC(3), and VEC(4) into VEC(4). */
vpternlogd $0xfe, %VMM(2), %VMM(3), %VMM(4)
/* Test VEC(4) against itself. Store any CHAR mismatches in k1.
*/
VPTEST %VMM(4), %VMM(4), %k1
/* k1 must go to ecx for L(return_vec_0_1_2_3). */
KMOV %k1, %VRCX
test %VRCX, %VRCX
jnz L(return_vec_0_1_2_3)
/* NB: eax must be zero to reach here. */
ret
.p2align 4,, 9
L(8x_end_return_vec_0_1_2_3):
movq %rdx, %rdi
L(8x_return_vec_0_1_2_3):
/* L(loop_4x_vec) leaves result in `k1` for VEC_SIZE == 64. */
# if VEC_SIZE == 64
KMOV %k1, %VRCX
# endif
addq %rdi, %rsi
L(return_vec_0_1_2_3):
VPTEST %VMM(1), %VMM(1), %k0
KMOV %k0, %VRAX
test %VRAX, %VRAX
jnz L(return_vec_0)
VPTEST %VMM(2), %VMM(2), %k0
KMOV %k0, %VRAX
test %VRAX, %VRAX
jnz L(return_vec_1)
VPTEST %VMM(3), %VMM(3), %k0
KMOV %k0, %VRAX
test %VRAX, %VRAX
jnz L(return_vec_2)
.p2align 4,, 2
L(return_vec_3):
/* bsf saves 1 byte from tzcnt. This keep L(return_vec_3) in one
fetch block and the entire L(*return_vec_0_1_2_3) in 1 cache
line. */
bsf %VRCX, %VRCX
# ifdef USE_AS_WMEMCMP
movl (VEC_SIZE * 3)(%rdi, %rcx, CHAR_SIZE), %eax
xorl %edx, %edx
cmpl (VEC_SIZE * 3)(%rsi, %rcx, CHAR_SIZE), %eax
setg %dl
leal -1(%rdx, %rdx), %eax
# else
movzbl (VEC_SIZE * 3)(%rdi, %rcx), %eax
movzbl (VEC_SIZE * 3)(%rsi, %rcx), %ecx
subl %ecx, %eax
# endif
ret
.p2align 4,, 8
L(return_vec_1):
/* bsf saves 1 byte over tzcnt and keeps L(return_vec_1) in one
fetch block. */
bsf %VRAX, %VRAX
# ifdef USE_AS_WMEMCMP
movl VEC_SIZE(%rdi, %rax, CHAR_SIZE), %ecx
xorl %edx, %edx
cmpl VEC_SIZE(%rsi, %rax, CHAR_SIZE), %ecx
setg %dl
leal -1(%rdx, %rdx), %eax
# else
movzbl VEC_SIZE(%rsi, %rax), %ecx
movzbl VEC_SIZE(%rdi, %rax), %eax
subl %ecx, %eax
# endif
ret
.p2align 4,, 7
L(return_vec_2):
/* bsf saves 1 byte over tzcnt and keeps L(return_vec_2) in one
fetch block. */
bsf %VRAX, %VRAX
# ifdef USE_AS_WMEMCMP
movl (VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %ecx
xorl %edx, %edx
cmpl (VEC_SIZE * 2)(%rsi, %rax, CHAR_SIZE), %ecx
setg %dl
leal -1(%rdx, %rdx), %eax
# else
movzbl (VEC_SIZE * 2)(%rsi, %rax), %ecx
movzbl (VEC_SIZE * 2)(%rdi, %rax), %eax
subl %ecx, %eax
# endif
ret
.p2align 4,, 8
L(more_8x_vec):
/* Set end of s1 in rdx. */
leaq -(VEC_SIZE * 4)(%rdi, %rdx, CHAR_SIZE), %rdx
/* rsi stores s2 - s1. This allows loop to only update one
pointer. */
subq %rdi, %rsi
/* Align s1 pointer. */
andq $-VEC_SIZE, %rdi
/* Adjust because first 4x vec where check already. */
subq $-(VEC_SIZE * 4), %rdi
.p2align 4
L(loop_4x_vec):
VMOVU (%rsi, %rdi), %VMM(1)
vpxorq (%rdi), %VMM(1), %VMM(1)
VMOVU VEC_SIZE(%rsi, %rdi), %VMM(2)
vpxorq VEC_SIZE(%rdi), %VMM(2), %VMM(2)
VMOVU (VEC_SIZE * 2)(%rsi, %rdi), %VMM(3)
vpxorq (VEC_SIZE * 2)(%rdi), %VMM(3), %VMM(3)
VMOVU (VEC_SIZE * 3)(%rsi, %rdi), %VMM(4)
vpternlogd $0xde, (VEC_SIZE * 3)(%rdi), %VMM(1), %VMM(4)
vpternlogd $0xfe, %VMM(2), %VMM(3), %VMM(4)
VPTEST %VMM(4), %VMM(4), %k1
/* If VEC_SIZE == 64 just branch with KTEST. We have free port0
space and it allows the loop to fit in 2x cache lines
instead of 3. */
# if VEC_SIZE == 64
KTEST %k1, %k1
# else
KMOV %k1, %VRCX
test %VRCX, %VRCX
# endif
jnz L(8x_return_vec_0_1_2_3)
subq $-(VEC_SIZE * 4), %rdi
cmpq %rdx, %rdi
jb L(loop_4x_vec)
subq %rdx, %rdi
/* rdi has 4 * VEC_SIZE - remaining length. */
cmpl $(VEC_SIZE * 3), %edi
jge L(8x_last_1x_vec)
/* Load regardless of branch. */
VMOVU (VEC_SIZE * 2)(%rsi, %rdx), %VMM(3)
/* Separate logic as we can only use testb for VEC_SIZE == 64.
*/
# if VEC_SIZE == 64
testb %dil, %dil
js L(8x_last_2x_vec)
# else
cmpl $(VEC_SIZE * 2), %edi
jge L(8x_last_2x_vec)
# endif
vpxorq (VEC_SIZE * 2)(%rdx), %VMM(3), %VMM(3)
VMOVU (%rsi, %rdx), %VMM(1)
vpxorq (%rdx), %VMM(1), %VMM(1)
VMOVU VEC_SIZE(%rsi, %rdx), %VMM(2)
vpxorq VEC_SIZE(%rdx), %VMM(2), %VMM(2)
VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %VMM(4)
vpternlogd $0xde, (VEC_SIZE * 3)(%rdx), %VMM(1), %VMM(4)
vpternlogd $0xfe, %VMM(2), %VMM(3), %VMM(4)
VPTEST %VMM(4), %VMM(4), %k1
/* L(8x_end_return_vec_0_1_2_3) expects bitmask to still be in
`k1` if VEC_SIZE == 64. */
# if VEC_SIZE == 64
KTEST %k1, %k1
# else
KMOV %k1, %VRCX
test %VRCX, %VRCX
# endif
jnz L(8x_end_return_vec_0_1_2_3)
/* NB: eax must be zero to reach here. */
ret
/* Only entry is from L(more_8x_vec). */
.p2align 4,, 6
L(8x_last_2x_vec):
VPCMP $4, (VEC_SIZE * 2)(%rdx), %VMM(3), %k1
KMOV %k1, %VRAX
test %VRAX, %VRAX
jnz L(8x_return_vec_2)
.p2align 4,, 5
L(8x_last_1x_vec):
VMOVU (VEC_SIZE * 3)(%rsi, %rdx), %VMM(1)
VPCMP $4, (VEC_SIZE * 3)(%rdx), %VMM(1), %k1
KMOV %k1, %VRAX
test %VRAX, %VRAX
jnz L(8x_return_vec_3)
ret
/* Not ideally aligned (at offset +9 bytes in fetch block) but
not aligning keeps it in the same cache line as
L(8x_last_1x/2x_vec) so likely worth it. As well, saves code
size. */
.p2align 4,, 4
L(8x_return_vec_2):
subq $VEC_SIZE, %rdx
L(8x_return_vec_3):
bsf %VRAX, %VRAX
# ifdef USE_AS_WMEMCMP
leaq (%rdx, %rax, CHAR_SIZE), %rax
movl (VEC_SIZE * 3)(%rax), %ecx
xorl %edx, %edx
cmpl (VEC_SIZE * 3)(%rsi, %rax), %ecx
setg %dl
leal -1(%rdx, %rdx), %eax
# else
addq %rdx, %rax
movzbl (VEC_SIZE * 3)(%rsi, %rax), %ecx
movzbl (VEC_SIZE * 3)(%rax), %eax
subl %ecx, %eax
# endif
ret
.p2align 4,, 8
L(last_2x_vec):
/* Check second to last VEC. */
VMOVU -(VEC_SIZE * 2)(%rsi, %rdx, CHAR_SIZE), %VMM(1)
VPCMP $4, -(VEC_SIZE * 2)(%rdi, %rdx, CHAR_SIZE), %VMM(1), %k1
KMOV %k1, %VRAX
test %VRAX, %VRAX
jnz L(return_vec_1_end)
/* Check last VEC. */
.p2align 4,, 8
L(last_1x_vec):
VMOVU -(VEC_SIZE * 1)(%rsi, %rdx, CHAR_SIZE), %VMM(1)
VPCMP $4, -(VEC_SIZE * 1)(%rdi, %rdx, CHAR_SIZE), %VMM(1), %k1
KMOV %k1, %VRAX
test %VRAX, %VRAX
jnz L(return_vec_0_end)
ret
/* Don't fully align. Takes 2-fetch blocks either way and
aligning will cause code to spill into another cacheline.
*/
.p2align 4,, 3
L(return_vec_1_end):
/* Use bsf to save code size. This is necessary to have
L(one_or_less) fit in aligning bytes between. */
bsf %VRAX, %VRAX
addl %edx, %eax
# ifdef USE_AS_WMEMCMP
movl -(VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %ecx
xorl %edx, %edx
cmpl -(VEC_SIZE * 2)(%rsi, %rax, CHAR_SIZE), %ecx
setg %dl
leal -1(%rdx, %rdx), %eax
# else
movzbl -(VEC_SIZE * 2)(%rsi, %rax), %ecx
movzbl -(VEC_SIZE * 2)(%rdi, %rax), %eax
subl %ecx, %eax
# endif
ret
.p2align 4,, 2
/* Don't align. Takes 2-fetch blocks either way and aligning
will cause code to spill into another cacheline. */
L(return_vec_0_end):
bsf %VRAX, %VRAX
addl %edx, %eax
# ifdef USE_AS_WMEMCMP
movl -VEC_SIZE(%rdi, %rax, CHAR_SIZE), %ecx
xorl %edx, %edx
cmpl -VEC_SIZE(%rsi, %rax, CHAR_SIZE), %ecx
setg %dl
leal -1(%rdx, %rdx), %eax
# else
movzbl -VEC_SIZE(%rsi, %rax), %ecx
movzbl -VEC_SIZE(%rdi, %rax), %eax
subl %ecx, %eax
# endif
ret
/* evex256: 2-byte until next cache line. evex512: 46-bytes
until next cache line. */
END (MEMCMP)
#endif
|