about summary refs log tree commit diff
path: root/sysdeps/x86_64/multiarch/memcmp-evex-movbe.S
blob: a63db75b350ff3024686167e0c375ee1a8be42a0 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
/* memcmp/wmemcmp optimized with 256-bit EVEX instructions.
   Copyright (C) 2021-2023 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include <isa-level.h>

#if ISA_SHOULD_BUILD (4)


/* memcmp/wmemcmp is implemented as:
   1. Use ymm vector compares when possible. The only case where
      vector compares is not possible for when size < CHAR_PER_VEC
      and loading from either s1 or s2 would cause a page cross.
   2. For size from 2 to 7 bytes on page cross, load as big endian
      with movbe and bswap to avoid branches.
   3. Use xmm vector compare when size >= 4 bytes for memcmp or
      size >= 8 bytes for wmemcmp.
   4. Optimistically compare up to first 4 * CHAR_PER_VEC one at a
      to check for early mismatches. Only do this if its guranteed the
      work is not wasted.
   5. If size is 8 * VEC_SIZE or less, unroll the loop.
   6. Compare 4 * VEC_SIZE at a time with the aligned first memory
      area.
   7. Use 2 vector compares when size is 2 * CHAR_PER_VEC or less.
   8. Use 4 vector compares when size is 4 * CHAR_PER_VEC or less.
   9. Use 8 vector compares when size is 8 * CHAR_PER_VEC or less.

When possible the implementation tries to optimize for frontend in the
following ways:
Throughput:
    1. All code sections that fit are able to run optimally out of the
       LSD.
    2. All code sections that fit are able to run optimally out of the
       DSB
    3. Basic blocks are contained in minimum number of fetch blocks
       necessary.

Latency:
    1. Logically connected basic blocks are put in the same
       cache-line.
    2. Logically connected basic blocks that do not fit in the same
       cache-line are put in adjacent lines. This can get beneficial
       L2 spatial prefetching and L1 next-line prefetching.  */

# include <sysdep.h>

# ifndef MEMCMP
#  define MEMCMP	__memcmp_evex_movbe
# endif

# ifndef VEC_SIZE
#  include "x86-evex256-vecs.h"
# endif

# ifdef USE_AS_WMEMCMP
#  define VMOVU_MASK	vmovdqu32
#  define CHAR_SIZE	4
#  define VPCMP	vpcmpd
#  define VPCMPEQ	vpcmpeqd
#  define VPTEST	vptestmd

#  define USE_WIDE_CHAR
# else
#  define VMOVU_MASK	vmovdqu8
#  define CHAR_SIZE	1
#  define VPCMP	vpcmpub
#  define VPCMPEQ	vpcmpeqb
#  define VPTEST	vptestmb
# endif

# include "reg-macros.h"

# define PAGE_SIZE	4096
# define CHAR_PER_VEC	(VEC_SIZE / CHAR_SIZE)


/* Warning!
           wmemcmp has to use SIGNED comparison for elements.
           memcmp has to use UNSIGNED comparison for elemnts.
*/

	.section SECTION(.text), "ax", @progbits
/* Cache align memcmp entry. This allows for much more thorough
   frontend optimization.  */
ENTRY_P2ALIGN (MEMCMP, 6)
# ifdef __ILP32__
	/* Clear the upper 32 bits.  */
	movl	%edx, %edx
# endif
	cmp	$CHAR_PER_VEC, %RDX_LP
	/* Fall through for [0, VEC_SIZE] as its the hottest.  */
	ja	L(more_1x_vec)

	/* Create mask of bytes that are guranteed to be valid because
	   of length (edx). Using masked movs allows us to skip checks
	   for page crosses/zero size.  */
	mov	$-1, %VRAX
	bzhi	%VRDX, %VRAX, %VRAX
	/* NB: A `jz` might be useful here. Page-faults that are
	   invalidated by predicate execution (the evex mask) can be
	   very slow.  The expectation is this is not the norm so and
	   "most" code will not regularly call 'memcmp' with length = 0
	   and memory that is not wired up.  */
	KMOV	%VRAX, %k2



	/* Safe to load full ymm with mask.  */
	VMOVU_MASK (%rsi), %VMM(2){%k2}{z}
	/* Slightly different method for VEC_SIZE == 64 to save a bit of
	   code size. This allows us to fit L(return_vec_0) entirely in
	   the first cache line.  */
# if VEC_SIZE == 64
	VPCMPEQ	(%rdi), %VMM(2), %k1{%k2}
	KMOV	%k1, %VRCX
	sub	%VRCX, %VRAX
# else
	VPCMP	$4, (%rdi), %VMM(2), %k1{%k2}
	KMOV	%k1, %VRAX
	test	%VRAX, %VRAX
# endif
	jnz	L(return_vec_0)
	ret

	.p2align 4,, 11
L(return_vec_0):
	bsf	%VRAX, %VRAX
# ifdef USE_AS_WMEMCMP
	movl	(%rdi, %rax, CHAR_SIZE), %ecx
	xorl	%edx, %edx
	cmpl	(%rsi, %rax, CHAR_SIZE), %ecx
	/* NB: no partial register stall here because xorl zero idiom
	   above.  */
	setg	%dl
	leal	-1(%rdx, %rdx), %eax
# else
	movzbl	(%rsi, %rax), %ecx
#  if VEC_SIZE == 64
	movb	(%rdi, %rax), %al
#  else
	movzbl	(%rdi, %rax), %eax
#  endif
	subl	%ecx, %eax
# endif
	ret

	.p2align 4,, 11
L(more_1x_vec):
	/* From VEC to 2 * VEC.  No branch when size == VEC_SIZE.  */
	VMOVU	(%rsi), %VMM(1)
	/* Use compare not equals to directly check for mismatch.  */
	VPCMP	$4, (%rdi), %VMM(1), %k1
	KMOV	%k1, %VRAX
	/* NB: eax must be destination register if going to
	   L(return_vec_[0,2]). For L(return_vec_3) destination
	   register must be ecx.  */
	test	%VRAX, %VRAX
	jnz	L(return_vec_0)

	cmpq	$(CHAR_PER_VEC * 2), %rdx
	jbe	L(last_1x_vec)

	/* Check second VEC no matter what.  */
	VMOVU	VEC_SIZE(%rsi), %VMM(2)
	VPCMP	$4, VEC_SIZE(%rdi), %VMM(2), %k1
	KMOV	%k1, %VRAX
	test	%VRAX, %VRAX
	jnz	L(return_vec_1)

	/* Less than 4 * VEC.  */
	cmpq	$(CHAR_PER_VEC * 4), %rdx
	jbe	L(last_2x_vec)

	/* Check third and fourth VEC no matter what.  */
	VMOVU	(VEC_SIZE * 2)(%rsi), %VMM(3)
	VPCMP	$4, (VEC_SIZE * 2)(%rdi), %VMM(3), %k1
	KMOV	%k1, %VRAX
	test	%VRAX, %VRAX
	jnz	L(return_vec_2)

	VMOVU	(VEC_SIZE * 3)(%rsi), %VMM(4)
	VPCMP	$4, (VEC_SIZE * 3)(%rdi), %VMM(4), %k1
	KMOV	%k1, %VRCX
	test	%VRCX, %VRCX
	jnz	L(return_vec_3)

	/* Go to 4x VEC loop.  */
	cmpq	$(CHAR_PER_VEC * 8), %rdx
	ja	L(more_8x_vec)

	/* Handle remainder of size = 4 * VEC + 1 to 8 * VEC without any
	   branches.  */

	/* Load first two VEC from s2 before adjusting addresses.  */
	VMOVU	-(VEC_SIZE * 4)(%rsi, %rdx, CHAR_SIZE), %VMM(1)
	VMOVU	-(VEC_SIZE * 3)(%rsi, %rdx, CHAR_SIZE), %VMM(2)
	leaq	-(4 * VEC_SIZE)(%rdi, %rdx, CHAR_SIZE), %rdi
	leaq	-(4 * VEC_SIZE)(%rsi, %rdx, CHAR_SIZE), %rsi

	/* Wait to load from s1 until addressed adjust due to
	   unlamination of microfusion with complex address mode.  */

	/* vpxor will be all 0s if s1 and s2 are equal. Otherwise it
	   will have some 1s.  */
	vpxorq	(%rdi), %VMM(1), %VMM(1)
	vpxorq	(VEC_SIZE)(%rdi), %VMM(2), %VMM(2)

	VMOVU	(VEC_SIZE * 2)(%rsi), %VMM(3)
	vpxorq	(VEC_SIZE * 2)(%rdi), %VMM(3), %VMM(3)

	VMOVU	(VEC_SIZE * 3)(%rsi), %VMM(4)
	/* Ternary logic to xor (VEC_SIZE * 3)(%rdi) with VEC(4) while
	   oring with VEC(1). Result is stored in VEC(4).  */
	vpternlogd $0xde, (VEC_SIZE * 3)(%rdi), %VMM(1), %VMM(4)

	/* Or together VEC(2), VEC(3), and VEC(4) into VEC(4).  */
	vpternlogd $0xfe, %VMM(2), %VMM(3), %VMM(4)

	/* Test VEC(4) against itself. Store any CHAR mismatches in k1.
	 */
	VPTEST	%VMM(4), %VMM(4), %k1
	/* k1 must go to ecx for L(return_vec_0_1_2_3).  */
	KMOV	%k1, %VRCX
	test	%VRCX, %VRCX
	jnz	L(return_vec_0_1_2_3)
	/* NB: eax must be zero to reach here.  */
	ret


	.p2align 4,, 9
L(8x_end_return_vec_0_1_2_3):
	movq	%rdx, %rdi
L(8x_return_vec_0_1_2_3):
	/* L(loop_4x_vec) leaves result in `k1` for VEC_SIZE == 64.  */
# if VEC_SIZE == 64
	KMOV	%k1, %VRCX
# endif
	addq	%rdi, %rsi
L(return_vec_0_1_2_3):
	VPTEST	%VMM(1), %VMM(1), %k0
	KMOV	%k0, %VRAX
	test	%VRAX, %VRAX
	jnz	L(return_vec_0)

	VPTEST	%VMM(2), %VMM(2), %k0
	KMOV	%k0, %VRAX
	test	%VRAX, %VRAX
	jnz	L(return_vec_1)

	VPTEST	%VMM(3), %VMM(3), %k0
	KMOV	%k0, %VRAX
	test	%VRAX, %VRAX
	jnz	L(return_vec_2)
	.p2align 4,, 2
L(return_vec_3):
	/* bsf saves 1 byte from tzcnt. This keep L(return_vec_3) in one
	   fetch block and the entire L(*return_vec_0_1_2_3) in 1 cache
	   line.  */
	bsf	%VRCX, %VRCX
# ifdef USE_AS_WMEMCMP
	movl	(VEC_SIZE * 3)(%rdi, %rcx, CHAR_SIZE), %eax
	xorl	%edx, %edx
	cmpl	(VEC_SIZE * 3)(%rsi, %rcx, CHAR_SIZE), %eax
	setg	%dl
	leal	-1(%rdx, %rdx), %eax
# else
	movzbl	(VEC_SIZE * 3)(%rdi, %rcx), %eax
	movzbl	(VEC_SIZE * 3)(%rsi, %rcx), %ecx
	subl	%ecx, %eax
# endif
	ret


	.p2align 4,, 8
L(return_vec_1):
	/* bsf saves 1 byte over tzcnt and keeps L(return_vec_1) in one
	   fetch block.  */
	bsf	%VRAX, %VRAX
# ifdef USE_AS_WMEMCMP
	movl	VEC_SIZE(%rdi, %rax, CHAR_SIZE), %ecx
	xorl	%edx, %edx
	cmpl	VEC_SIZE(%rsi, %rax, CHAR_SIZE), %ecx
	setg	%dl
	leal	-1(%rdx, %rdx), %eax
# else
	movzbl	VEC_SIZE(%rsi, %rax), %ecx
	movzbl	VEC_SIZE(%rdi, %rax), %eax
	subl	%ecx, %eax
# endif
	ret

	.p2align 4,, 7
L(return_vec_2):
	/* bsf saves 1 byte over tzcnt and keeps L(return_vec_2) in one
	   fetch block.  */
	bsf	%VRAX, %VRAX
# ifdef USE_AS_WMEMCMP
	movl	(VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %ecx
	xorl	%edx, %edx
	cmpl	(VEC_SIZE * 2)(%rsi, %rax, CHAR_SIZE), %ecx
	setg	%dl
	leal	-1(%rdx, %rdx), %eax
# else
	movzbl	(VEC_SIZE * 2)(%rsi, %rax), %ecx
	movzbl	(VEC_SIZE * 2)(%rdi, %rax), %eax
	subl	%ecx, %eax
# endif
	ret

	.p2align 4,, 8
L(more_8x_vec):
	/* Set end of s1 in rdx.  */
	leaq	-(VEC_SIZE * 4)(%rdi, %rdx, CHAR_SIZE), %rdx
	/* rsi stores s2 - s1. This allows loop to only update one
	   pointer.  */
	subq	%rdi, %rsi
	/* Align s1 pointer.  */
	andq	$-VEC_SIZE, %rdi
	/* Adjust because first 4x vec where check already.  */
	subq	$-(VEC_SIZE * 4), %rdi

	.p2align 4
L(loop_4x_vec):
	VMOVU	(%rsi, %rdi), %VMM(1)
	vpxorq	(%rdi), %VMM(1), %VMM(1)
	VMOVU	VEC_SIZE(%rsi, %rdi), %VMM(2)
	vpxorq	VEC_SIZE(%rdi), %VMM(2), %VMM(2)
	VMOVU	(VEC_SIZE * 2)(%rsi, %rdi), %VMM(3)
	vpxorq	(VEC_SIZE * 2)(%rdi), %VMM(3), %VMM(3)
	VMOVU	(VEC_SIZE * 3)(%rsi, %rdi), %VMM(4)
	vpternlogd $0xde, (VEC_SIZE * 3)(%rdi), %VMM(1), %VMM(4)
	vpternlogd $0xfe, %VMM(2), %VMM(3), %VMM(4)
	VPTEST	%VMM(4), %VMM(4), %k1
	/* If VEC_SIZE == 64 just branch with KTEST. We have free port0
	   space and it allows the loop to fit in 2x cache lines
	   instead of 3.  */
# if VEC_SIZE == 64
	KTEST	%k1, %k1
# else
	KMOV	%k1, %VRCX
	test	%VRCX, %VRCX
# endif
	jnz	L(8x_return_vec_0_1_2_3)
	subq	$-(VEC_SIZE * 4), %rdi
	cmpq	%rdx, %rdi
	jb	L(loop_4x_vec)
	subq	%rdx, %rdi
	/* rdi has 4 * VEC_SIZE - remaining length.  */
	cmpl	$(VEC_SIZE * 3), %edi
	jge	L(8x_last_1x_vec)
	/* Load regardless of branch.  */
	VMOVU	(VEC_SIZE * 2)(%rsi, %rdx), %VMM(3)

	/* Seperate logic as we can only use testb for VEC_SIZE == 64.
	 */
# if VEC_SIZE == 64
	testb	%dil, %dil
	js	L(8x_last_2x_vec)
# else
	cmpl	$(VEC_SIZE * 2), %edi
	jge	L(8x_last_2x_vec)
# endif

	vpxorq	(VEC_SIZE * 2)(%rdx), %VMM(3), %VMM(3)

	VMOVU	(%rsi, %rdx), %VMM(1)
	vpxorq	(%rdx), %VMM(1), %VMM(1)

	VMOVU	VEC_SIZE(%rsi, %rdx), %VMM(2)
	vpxorq	VEC_SIZE(%rdx), %VMM(2), %VMM(2)
	VMOVU	(VEC_SIZE * 3)(%rsi, %rdx), %VMM(4)
	vpternlogd $0xde, (VEC_SIZE * 3)(%rdx), %VMM(1), %VMM(4)
	vpternlogd $0xfe, %VMM(2), %VMM(3), %VMM(4)
	VPTEST	%VMM(4), %VMM(4), %k1
	/* L(8x_end_return_vec_0_1_2_3) expects bitmask to still be in
	   `k1`  if VEC_SIZE == 64.  */
# if VEC_SIZE == 64
	KTEST	%k1, %k1
# else
	KMOV	%k1, %VRCX
	test	%VRCX, %VRCX
# endif
	jnz	L(8x_end_return_vec_0_1_2_3)
	/* NB: eax must be zero to reach here.  */
	ret

	/* Only entry is from L(more_8x_vec).  */
	.p2align 4,, 6
L(8x_last_2x_vec):
	VPCMP	$4, (VEC_SIZE * 2)(%rdx), %VMM(3), %k1
	KMOV	%k1, %VRAX
	test	%VRAX, %VRAX
	jnz	L(8x_return_vec_2)
	.p2align 4,, 5
L(8x_last_1x_vec):
	VMOVU	(VEC_SIZE * 3)(%rsi, %rdx), %VMM(1)
	VPCMP	$4, (VEC_SIZE * 3)(%rdx), %VMM(1), %k1
	KMOV	%k1, %VRAX
	test	%VRAX, %VRAX
	jnz	L(8x_return_vec_3)
	ret

	/* Not ideally aligned (at offset +9 bytes in fetch block) but
	   not aligning keeps it in the same cache line as
	   L(8x_last_1x/2x_vec) so likely worth it. As well, saves code
	   size.  */
	.p2align 4,, 4
L(8x_return_vec_2):
	subq	$VEC_SIZE, %rdx
L(8x_return_vec_3):
	bsf	%VRAX, %VRAX
# ifdef USE_AS_WMEMCMP
	leaq	(%rdx, %rax, CHAR_SIZE), %rax
	movl	(VEC_SIZE * 3)(%rax), %ecx
	xorl	%edx, %edx
	cmpl	(VEC_SIZE * 3)(%rsi, %rax), %ecx
	setg	%dl
	leal	-1(%rdx, %rdx), %eax
# else
	addq	%rdx, %rax
	movzbl	(VEC_SIZE * 3)(%rsi, %rax), %ecx
	movzbl	(VEC_SIZE * 3)(%rax), %eax
	subl	%ecx, %eax
# endif
	ret

	.p2align 4,, 8
L(last_2x_vec):
	/* Check second to last VEC.  */
	VMOVU	-(VEC_SIZE * 2)(%rsi, %rdx, CHAR_SIZE), %VMM(1)
	VPCMP	$4, -(VEC_SIZE * 2)(%rdi, %rdx, CHAR_SIZE), %VMM(1), %k1
	KMOV	%k1, %VRAX
	test	%VRAX, %VRAX
	jnz	L(return_vec_1_end)

	/* Check last VEC.  */
	.p2align 4,, 8
L(last_1x_vec):
	VMOVU	-(VEC_SIZE * 1)(%rsi, %rdx, CHAR_SIZE), %VMM(1)
	VPCMP	$4, -(VEC_SIZE * 1)(%rdi, %rdx, CHAR_SIZE), %VMM(1), %k1
	KMOV	%k1, %VRAX
	test	%VRAX, %VRAX
	jnz	L(return_vec_0_end)
	ret


	/* Don't fully align. Takes 2-fetch blocks either way and
	   aligning will cause code to spill into another cacheline.
	 */
	.p2align 4,, 3
L(return_vec_1_end):
	/* Use bsf to save code size. This is necessary to have
	   L(one_or_less) fit in aligning bytes between.  */
	bsf	%VRAX, %VRAX
	addl	%edx, %eax
# ifdef USE_AS_WMEMCMP
	movl	-(VEC_SIZE * 2)(%rdi, %rax, CHAR_SIZE), %ecx
	xorl	%edx, %edx
	cmpl	-(VEC_SIZE * 2)(%rsi, %rax, CHAR_SIZE), %ecx
	setg	%dl
	leal	-1(%rdx, %rdx), %eax
# else
	movzbl	-(VEC_SIZE * 2)(%rsi, %rax), %ecx
	movzbl	-(VEC_SIZE * 2)(%rdi, %rax), %eax
	subl	%ecx, %eax
# endif
	ret

	.p2align 4,, 2
	/* Don't align. Takes 2-fetch blocks either way and aligning
	   will cause code to spill into another cacheline.  */
L(return_vec_0_end):
	bsf	%VRAX, %VRAX
	addl	%edx, %eax
# ifdef USE_AS_WMEMCMP
	movl	-VEC_SIZE(%rdi, %rax, CHAR_SIZE), %ecx
	xorl	%edx, %edx
	cmpl	-VEC_SIZE(%rsi, %rax, CHAR_SIZE), %ecx
	setg	%dl
	leal	-1(%rdx, %rdx), %eax
# else
	movzbl	-VEC_SIZE(%rsi, %rax), %ecx
	movzbl	-VEC_SIZE(%rdi, %rax), %eax
	subl	%ecx, %eax
# endif
	ret
	/* evex256: 2-byte until next cache line. evex512: 46-bytes
	   until next cache line.  */
END (MEMCMP)
#endif