about summary refs log tree commit diff
path: root/sysdeps/x86_64/fpu/multiarch/svml_s_asinhf8_core_avx2.S
blob: f9aeea6c85636a80c5b12c40fe9b987cbce7528f (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
/* Function asinhf vectorized with AVX2.
   Copyright (C) 2021-2023 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   https://www.gnu.org/licenses/.  */

/*
 * ALGORITHM DESCRIPTION:
 *
 *   Compute asinh(x) as log(x + sqrt(x*x + 1))
 *
 *   Special cases:
 *
 *   asinh(NaN) = quiet NaN, and raise invalid exception
 *   asinh(INF) = that INF
 *   asinh(0)   = that 0
 *
 */

/* Offsets for data table __svml_sasinh_data_internal
 */
#define SgnMask				0
#define sOne				32
#define sPoly				64
#define iBrkValue			320
#define iOffExpoMask			352
#define sBigThreshold			384
#define sC2				416
#define sC3				448
#define sHalf				480
#define sLargestFinite			512
#define sLittleThreshold		544
#define sSign				576
#define sThirtyOne			608
#define sTopMask8			640
#define XScale				672
#define sLn2				704

#include <sysdep.h>

	.section .text.avx2, "ax", @progbits
ENTRY(_ZGVdN8v_asinhf_avx2)
	pushq	%rbp
	cfi_def_cfa_offset(16)
	movq	%rsp, %rbp
	cfi_def_cfa(6, 16)
	cfi_offset(6, -16)
	andq	$-32, %rsp
	subq	$96, %rsp
	vmovaps	%ymm0, %ymm9

	/* Load the constant 1 and a sign mask */
	vmovups	sOne+__svml_sasinh_data_internal(%rip), %ymm8

	/* No need to split X when FMA is available in hardware. */
	vmulps	%ymm9, %ymm9, %ymm5
	vmovups	sTopMask8+__svml_sasinh_data_internal(%rip), %ymm1

	/*
	 * Finally, express Y + W = X^2 + 1 accurately where Y has <= 8 bits.
	 * If |X| <= 1 then |XHi| <= 1 and so |X2Hi| <= 1, so we can treat 1
	 * as the dominant component in the compensated summation. Otherwise,
	 * if |X| >= 1, then since X2Hi only has 22 significant bits, the basic
	 * addition will be exact anyway until we get to |X| >= 2^24. But by
	 * that time the log function is well-conditioned enough that the
	 * rounding error doesn't matter. Hence we can treat 1 as dominant even
	 * if it literally isn't.
	 */
	vaddps	%ymm5, %ymm8, %ymm13
	vandps	%ymm1, %ymm13, %ymm2
	vmovaps	%ymm9, %ymm4
	vsubps	%ymm13, %ymm8, %ymm11
	vsubps	%ymm2, %ymm13, %ymm15

	/*
	 * Compute R = 1/sqrt(Y + W) * (1 + d)
	 * Force R to <= 8 significant bits.
	 * This means that R * Y and R^2 * Y are exactly representable.
	 */
	vrsqrtps %ymm2, %ymm0
	vfmsub213ps %ymm5, %ymm9, %ymm4
	vaddps	%ymm11, %ymm5, %ymm12

	/*
	 * Get the absolute value of the input, since we will exploit antisymmetry
	 * and mostly assume X >= 0 in the core computation
	 */
	vandps	SgnMask+__svml_sasinh_data_internal(%rip), %ymm9, %ymm6

	/*
	 * Check whether the input is finite, by checking |X| <= MaxFloat
	 * Otherwise set the rangemask so that the callout will get used.
	 * Note that this will also use the callout for NaNs since not(NaN <= MaxFloat)
	 */
	vcmpnle_uqps sLargestFinite+__svml_sasinh_data_internal(%rip), %ymm6, %ymm10
	vaddps	%ymm12, %ymm4, %ymm14

	/*
	 * Unfortunately, we can still be in trouble if |X| <= 2^-5, since
	 * the absolute error 2^-(7+24)-ish in sqrt(1 + X^2) gets scaled up
	 * by 1/X and comes close to our threshold. Hence if |X| <= 2^-4,
	 * perform an alternative computation
	 * sqrt(1 + X^2) - 1 = X^2/2 - X^4/8 + X^6/16
	 * X2 = X^2
	 */
	vaddps	%ymm4, %ymm5, %ymm4

	/*
	 * The following computation can go wrong for very large X, basically
	 * because X^2 overflows. But for large X we have
	 * asinh(X) / log(2 X) - 1 =~= 1/(4 * X^2), so for X >= 2^30
	 * we can just later stick X back into the log and tweak up the exponent.
	 * Actually we scale X by 2^-30 and tweak the exponent up by 31,
	 * to stay in the safe range for the later log computation.
	 * Compute a flag now telling us when do do this.
	 */
	vcmplt_oqps sBigThreshold+__svml_sasinh_data_internal(%rip), %ymm6, %ymm7
	vaddps	%ymm15, %ymm14, %ymm3

	/*
	 * Now       1 / (1 + d)
	 * = 1 / (1 + (sqrt(1 - e) - 1))
	 * = 1 / sqrt(1 - e)
	 * = 1 + 1/2 * e + 3/8 * e^2 + 5/16 * e^3 + 35/128 * e^4 + ...
	 * So compute the first three nonconstant terms of that, so that
	 * we have a relative correction (1 + Corr) to apply to S etc.
	 * C1 = 1/2
	 * C2 = 3/8
	 * C3 = 5/16
	 */
	vmovups	sC3+__svml_sasinh_data_internal(%rip), %ymm12
	vmovmskps %ymm10, %edx
	vandps	%ymm1, %ymm0, %ymm10

	/*
	 * Compute S = (Y/sqrt(Y + W)) * (1 + d)
	 * and T = (W/sqrt(Y + W)) * (1 + d)
	 * so that S + T = sqrt(Y + W) * (1 + d)
	 * S is exact, and the rounding error in T is OK.
	 */
	vmulps	%ymm10, %ymm2, %ymm15
	vmulps	%ymm3, %ymm10, %ymm14
	vmovups	sHalf+__svml_sasinh_data_internal(%rip), %ymm3
	vsubps	%ymm8, %ymm15, %ymm0

	/*
	 * Obtain sqrt(1 + X^2) - 1 in two pieces
	 * sqrt(1 + X^2) - 1
	 * = sqrt(Y + W) - 1
	 * = (S + T) * (1 + Corr) - 1
	 * = [S - 1] + [T + (S + T) * Corr]
	 * We need a compensated summation for the last part. We treat S - 1
	 * as the larger part; it certainly is until about X < 2^-4, and in that
	 * case, the error is affordable since X dominates over sqrt(1 + X^2) - 1
	 * Final sum is dTmp5 (hi) + dTmp7 (lo)
	 */
	vaddps	%ymm14, %ymm15, %ymm13

	/*
	 * Compute e = -(2 * d + d^2)
	 * The first FMR is exact, and the rounding error in the other is acceptable
	 * since d and e are ~ 2^-8
	 */
	vmovaps	%ymm8, %ymm11
	vfnmadd231ps %ymm15, %ymm10, %ymm11
	vfnmadd231ps %ymm14, %ymm10, %ymm11
	vfmadd213ps sC2+__svml_sasinh_data_internal(%rip), %ymm11, %ymm12
	vfmadd213ps %ymm3, %ymm11, %ymm12
	vmulps	%ymm12, %ymm11, %ymm1

	/* Now multiplex the two possible computations */
	vcmple_oqps sLittleThreshold+__svml_sasinh_data_internal(%rip), %ymm6, %ymm11
	vfmadd213ps %ymm14, %ymm13, %ymm1
	vaddps	%ymm0, %ymm1, %ymm2
	vsubps	%ymm2, %ymm0, %ymm10

	/* sX2over2 = X^2/2 */
	vmulps	%ymm4, %ymm3, %ymm0
	vaddps	%ymm10, %ymm1, %ymm1

	/* sX4over4 = X^4/4 */
	vmulps	%ymm0, %ymm0, %ymm5

	/* sX46 = -X^4/4 + X^6/8 */
	vfmsub231ps %ymm0, %ymm5, %ymm5

	/* sX46over2 = -X^4/8 + x^6/16 */
	vmulps	%ymm5, %ymm3, %ymm3
	vaddps	%ymm3, %ymm0, %ymm5
	vblendvps %ymm11, %ymm5, %ymm2, %ymm2
	vsubps	%ymm5, %ymm0, %ymm4

	/*
	 * Now do another compensated sum to add |X| + [sqrt(1 + X^2) - 1].
	 * It's always safe to assume |X| is larger.
	 * This is the final 2-part argument to the log1p function
	 */
	vaddps	%ymm2, %ymm6, %ymm14

	/*
	 * Now resume the main code.
	 * reduction: compute r, n
	 */
	vmovups	iBrkValue+__svml_sasinh_data_internal(%rip), %ymm5
	vaddps	%ymm4, %ymm3, %ymm10

	/*
	 * Now we feed into the log1p code, using H in place of _VARG1 and
	 * also adding L into Xl.
	 * compute 1+x as high, low parts
	 */
	vmaxps	%ymm14, %ymm8, %ymm15
	vminps	%ymm14, %ymm8, %ymm0
	vblendvps %ymm11, %ymm10, %ymm1, %ymm12
	vsubps	%ymm14, %ymm6, %ymm1
	vaddps	%ymm0, %ymm15, %ymm3

	/* Now multiplex to the case X = 2^-30 * input, Xl = sL = 0 in the "big" case. */
	vmulps	XScale+__svml_sasinh_data_internal(%rip), %ymm6, %ymm6
	vaddps	%ymm1, %ymm2, %ymm13
	vsubps	%ymm3, %ymm15, %ymm15
	vaddps	%ymm13, %ymm12, %ymm1
	vaddps	%ymm15, %ymm0, %ymm2
	vblendvps %ymm7, %ymm3, %ymm6, %ymm0
	vaddps	%ymm2, %ymm1, %ymm4
	vpsubd	%ymm5, %ymm0, %ymm1
	vpsrad	$23, %ymm1, %ymm6
	vpand	iOffExpoMask+__svml_sasinh_data_internal(%rip), %ymm1, %ymm2
	vmovups	sPoly+224+__svml_sasinh_data_internal(%rip), %ymm1
	vpslld	$23, %ymm6, %ymm10
	vpaddd	%ymm5, %ymm2, %ymm13
	vcvtdq2ps %ymm6, %ymm0
	vpsubd	%ymm10, %ymm8, %ymm12

	/* polynomial evaluation */
	vsubps	%ymm8, %ymm13, %ymm8

	/* Add 31 to the exponent in the "large" case to get log(2 * input) */
	vaddps	sThirtyOne+__svml_sasinh_data_internal(%rip), %ymm0, %ymm3
	vandps	%ymm7, %ymm4, %ymm11
	vmulps	%ymm12, %ymm11, %ymm14
	vblendvps %ymm7, %ymm0, %ymm3, %ymm0
	vaddps	%ymm8, %ymm14, %ymm2
	vfmadd213ps sPoly+192+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1
	vfmadd213ps sPoly+160+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1
	vfmadd213ps sPoly+128+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1
	vfmadd213ps sPoly+96+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1
	vfmadd213ps sPoly+64+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1
	vfmadd213ps sPoly+32+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1
	vfmadd213ps sPoly+__svml_sasinh_data_internal(%rip), %ymm2, %ymm1
	vmulps	%ymm1, %ymm2, %ymm4
	vfmadd213ps %ymm2, %ymm2, %ymm4

	/* final reconstruction */
	vfmadd132ps sLn2+__svml_sasinh_data_internal(%rip), %ymm4, %ymm0

	/* Finally, reincorporate the original sign. */
	vandps	sSign+__svml_sasinh_data_internal(%rip), %ymm9, %ymm7
	vxorps	%ymm0, %ymm7, %ymm0
	testl	%edx, %edx

	/* Go to special inputs processing branch */
	jne	L(SPECIAL_VALUES_BRANCH)
	# LOE rbx r12 r13 r14 r15 edx ymm0 ymm9

	/* Restore registers
	 * and exit the function
	 */

L(EXIT):
	movq	%rbp, %rsp
	popq	%rbp
	cfi_def_cfa(7, 8)
	cfi_restore(6)
	ret
	cfi_def_cfa(6, 16)
	cfi_offset(6, -16)

	/* Branch to process
	 * special inputs
	 */

L(SPECIAL_VALUES_BRANCH):
	vmovups	%ymm9, 32(%rsp)
	vmovups	%ymm0, 64(%rsp)
	# LOE rbx r12 r13 r14 r15 edx ymm0

	xorl	%eax, %eax
	# LOE rbx r12 r13 r14 r15 eax edx

	vzeroupper
	movq	%r12, 16(%rsp)
	/*  DW_CFA_expression: r12 (r12) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -80; DW_OP_plus)  */
	.cfi_escape 0x10, 0x0c, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xb0, 0xff, 0xff, 0xff, 0x22
	movl	%eax, %r12d
	movq	%r13, 8(%rsp)
	/*  DW_CFA_expression: r13 (r13) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -88; DW_OP_plus)  */
	.cfi_escape 0x10, 0x0d, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xa8, 0xff, 0xff, 0xff, 0x22
	movl	%edx, %r13d
	movq	%r14, (%rsp)
	/*  DW_CFA_expression: r14 (r14) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -96; DW_OP_plus)  */
	.cfi_escape 0x10, 0x0e, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xa0, 0xff, 0xff, 0xff, 0x22
	# LOE rbx r15 r12d r13d

	/* Range mask
	 * bits check
	 */

L(RANGEMASK_CHECK):
	btl	%r12d, %r13d

	/* Call scalar math function */
	jc	L(SCALAR_MATH_CALL)
	# LOE rbx r15 r12d r13d

	/* Special inputs
	 * processing loop
	 */

L(SPECIAL_VALUES_LOOP):
	incl	%r12d
	cmpl	$8, %r12d

	/* Check bits in range mask */
	jl	L(RANGEMASK_CHECK)
	# LOE rbx r15 r12d r13d

	movq	16(%rsp), %r12
	cfi_restore(12)
	movq	8(%rsp), %r13
	cfi_restore(13)
	movq	(%rsp), %r14
	cfi_restore(14)
	vmovups	64(%rsp), %ymm0

	/* Go to exit */
	jmp	L(EXIT)
	/*  DW_CFA_expression: r12 (r12) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -80; DW_OP_plus)  */
	.cfi_escape 0x10, 0x0c, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xb0, 0xff, 0xff, 0xff, 0x22
	/*  DW_CFA_expression: r13 (r13) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -88; DW_OP_plus)  */
	.cfi_escape 0x10, 0x0d, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xa8, 0xff, 0xff, 0xff, 0x22
	/*  DW_CFA_expression: r14 (r14) (DW_OP_lit8; DW_OP_minus; DW_OP_const4s: -32; DW_OP_and; DW_OP_const4s: -96; DW_OP_plus)  */
	.cfi_escape 0x10, 0x0e, 0x0e, 0x38, 0x1c, 0x0d, 0xe0, 0xff, 0xff, 0xff, 0x1a, 0x0d, 0xa0, 0xff, 0xff, 0xff, 0x22
	# LOE rbx r12 r13 r14 r15 ymm0

	/* Scalar math fucntion call
	 * to process special input
	 */

L(SCALAR_MATH_CALL):
	movl	%r12d, %r14d
	vmovss	32(%rsp, %r14, 4), %xmm0
	call	asinhf@PLT
	# LOE rbx r14 r15 r12d r13d xmm0

	vmovss	%xmm0, 64(%rsp, %r14, 4)

	/* Process special inputs in loop */
	jmp	L(SPECIAL_VALUES_LOOP)
	# LOE rbx r15 r12d r13d
END(_ZGVdN8v_asinhf_avx2)

	.section .rodata, "a"
	.align	32

#ifdef __svml_sasinh_data_internal_typedef
typedef unsigned int VUINT32;
typedef struct {
	__declspec(align(32)) VUINT32 SgnMask[8][1];
	__declspec(align(32)) VUINT32 sOne[8][1];
	__declspec(align(32)) VUINT32 sPoly[8][8][1];
	__declspec(align(32)) VUINT32 iBrkValue[8][1];
	__declspec(align(32)) VUINT32 iOffExpoMask[8][1];
	__declspec(align(32)) VUINT32 sBigThreshold[8][1];
	__declspec(align(32)) VUINT32 sC2[8][1];
	__declspec(align(32)) VUINT32 sC3[8][1];
	__declspec(align(32)) VUINT32 sHalf[8][1];
	__declspec(align(32)) VUINT32 sLargestFinite[8][1];
	__declspec(align(32)) VUINT32 sLittleThreshold[8][1];
	__declspec(align(32)) VUINT32 sSign[8][1];
	__declspec(align(32)) VUINT32 sThirtyOne[8][1];
	__declspec(align(32)) VUINT32 sTopMask8[8][1];
	__declspec(align(32)) VUINT32 XScale[8][1];
	__declspec(align(32)) VUINT32 sLn2[8][1];
} __svml_sasinh_data_internal;
#endif
__svml_sasinh_data_internal:
	/* SgnMask */
	.long	0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff, 0x7fffffff
	/* sOne = SP 1.0 */
	.align	32
	.long	0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000, 0x3f800000
	/* sPoly[] = SP polynomial */
	.align	32
	.long	0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000, 0xbf000000 /* -5.0000000000000000000000000e-01 P0 */
	.long	0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94, 0x3eaaaa94 /* 3.3333265781402587890625000e-01 P1 */
	.long	0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e, 0xbe80058e /* -2.5004237890243530273437500e-01 P2 */
	.long	0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190, 0x3e4ce190 /* 2.0007920265197753906250000e-01 P3 */
	.long	0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37, 0xbe28ad37 /* -1.6472326219081878662109375e-01 P4 */
	.long	0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12, 0x3e0fcb12 /* 1.4042308926582336425781250e-01 P5 */
	.long	0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3, 0xbe1ad9e3 /* -1.5122179687023162841796875e-01 P6 */
	.long	0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed, 0x3e0d84ed /* 1.3820238411426544189453125e-01 P7 */
	/* iBrkValue = SP 2/3 */
	.align	32
	.long	0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab, 0x3f2aaaab
	/* iOffExpoMask = SP significand mask */
	.align	32
	.long	0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff, 0x007fffff
	/* sBigThreshold */
	.align	32
	.long	0x4E800000, 0x4E800000, 0x4E800000, 0x4E800000, 0x4E800000, 0x4E800000, 0x4E800000, 0x4E800000
	/* sC2 */
	.align	32
	.long	0x3EC00000, 0x3EC00000, 0x3EC00000, 0x3EC00000, 0x3EC00000, 0x3EC00000, 0x3EC00000, 0x3EC00000
	/* sC3 */
	.align	32
	.long	0x3EA00000, 0x3EA00000, 0x3EA00000, 0x3EA00000, 0x3EA00000, 0x3EA00000, 0x3EA00000, 0x3EA00000
	/* sHalf */
	.align	32
	.long	0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000, 0x3F000000
	/* sLargestFinite */
	.align	32
	.long	0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF, 0x7F7FFFFF
	/* sLittleThreshold */
	.align	32
	.long	0x3D800000, 0x3D800000, 0x3D800000, 0x3D800000, 0x3D800000, 0x3D800000, 0x3D800000, 0x3D800000
	/* sSign */
	.align	32
	.long	0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000, 0x80000000
	/* sThirtyOne */
	.align	32
	.long	0x41F80000, 0x41F80000, 0x41F80000, 0x41F80000, 0x41F80000, 0x41F80000, 0x41F80000, 0x41F80000
	/* sTopMask8 */
	.align	32
	.long	0xFFFF0000, 0xFFFF0000, 0xFFFF0000, 0xFFFF0000, 0xFFFF0000, 0xFFFF0000, 0xFFFF0000, 0xFFFF0000
	/* XScale */
	.align	32
	.long	0x30800000, 0x30800000, 0x30800000, 0x30800000, 0x30800000, 0x30800000, 0x30800000, 0x30800000
	/* sLn2 = SP ln(2) */
	.align	32
	.long	0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218, 0x3f317218
	.align	32
	.type	__svml_sasinh_data_internal, @object
	.size	__svml_sasinh_data_internal, .-__svml_sasinh_data_internal