about summary refs log tree commit diff
path: root/sysdeps/x86/cpu-features.c
blob: 0650786f019f27de971ecc67bdfd699a786c07d6 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
/* Initialize CPU feature data.
   This file is part of the GNU C Library.
   Copyright (C) 2008-2019 Free Software Foundation, Inc.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public
   License as published by the Free Software Foundation; either
   version 2.1 of the License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; if not, see
   <https://www.gnu.org/licenses/>.  */

#include <cpuid.h>
#include <cpu-features.h>
#include <dl-hwcap.h>
#include <libc-pointer-arith.h>

#if HAVE_TUNABLES
# define TUNABLE_NAMESPACE cpu
# include <unistd.h>		/* Get STDOUT_FILENO for _dl_printf.  */
# include <elf/dl-tunables.h>

extern void TUNABLE_CALLBACK (set_hwcaps) (tunable_val_t *)
  attribute_hidden;

# if CET_ENABLED
extern void TUNABLE_CALLBACK (set_x86_ibt) (tunable_val_t *)
  attribute_hidden;
extern void TUNABLE_CALLBACK (set_x86_shstk) (tunable_val_t *)
  attribute_hidden;
# endif
#endif

#if CET_ENABLED
# include <dl-cet.h>
# include <cet-tunables.h>
#endif

static void
get_extended_indices (struct cpu_features *cpu_features)
{
  unsigned int eax, ebx, ecx, edx;
  __cpuid (0x80000000, eax, ebx, ecx, edx);
  if (eax >= 0x80000001)
    __cpuid (0x80000001,
	     cpu_features->cpuid[COMMON_CPUID_INDEX_80000001].eax,
	     cpu_features->cpuid[COMMON_CPUID_INDEX_80000001].ebx,
	     cpu_features->cpuid[COMMON_CPUID_INDEX_80000001].ecx,
	     cpu_features->cpuid[COMMON_CPUID_INDEX_80000001].edx);
  if (eax >= 0x80000007)
    __cpuid (0x80000007,
	     cpu_features->cpuid[COMMON_CPUID_INDEX_80000007].eax,
	     cpu_features->cpuid[COMMON_CPUID_INDEX_80000007].ebx,
	     cpu_features->cpuid[COMMON_CPUID_INDEX_80000007].ecx,
	     cpu_features->cpuid[COMMON_CPUID_INDEX_80000007].edx);
  if (eax >= 0x80000008)
    __cpuid (0x80000008,
	     cpu_features->cpuid[COMMON_CPUID_INDEX_80000008].eax,
	     cpu_features->cpuid[COMMON_CPUID_INDEX_80000008].ebx,
	     cpu_features->cpuid[COMMON_CPUID_INDEX_80000008].ecx,
	     cpu_features->cpuid[COMMON_CPUID_INDEX_80000008].edx);
}

static void
get_common_indices (struct cpu_features *cpu_features,
		    unsigned int *family, unsigned int *model,
		    unsigned int *extended_model, unsigned int *stepping)
{
  if (family)
    {
      unsigned int eax;
      __cpuid (1, eax, cpu_features->cpuid[COMMON_CPUID_INDEX_1].ebx,
	       cpu_features->cpuid[COMMON_CPUID_INDEX_1].ecx,
	       cpu_features->cpuid[COMMON_CPUID_INDEX_1].edx);
      cpu_features->cpuid[COMMON_CPUID_INDEX_1].eax = eax;
      *family = (eax >> 8) & 0x0f;
      *model = (eax >> 4) & 0x0f;
      *extended_model = (eax >> 12) & 0xf0;
      *stepping = eax & 0x0f;
      if (*family == 0x0f)
	{
	  *family += (eax >> 20) & 0xff;
	  *model += *extended_model;
	}
    }

  if (cpu_features->basic.max_cpuid >= 7)
    __cpuid_count (7, 0,
		   cpu_features->cpuid[COMMON_CPUID_INDEX_7].eax,
		   cpu_features->cpuid[COMMON_CPUID_INDEX_7].ebx,
		   cpu_features->cpuid[COMMON_CPUID_INDEX_7].ecx,
		   cpu_features->cpuid[COMMON_CPUID_INDEX_7].edx);

  if (cpu_features->basic.max_cpuid >= 0xd)
    __cpuid_count (0xd, 1,
		   cpu_features->cpuid[COMMON_CPUID_INDEX_D_ECX_1].eax,
		   cpu_features->cpuid[COMMON_CPUID_INDEX_D_ECX_1].ebx,
		   cpu_features->cpuid[COMMON_CPUID_INDEX_D_ECX_1].ecx,
		   cpu_features->cpuid[COMMON_CPUID_INDEX_D_ECX_1].edx);

  /* Can we call xgetbv?  */
  if (CPU_FEATURES_CPU_P (cpu_features, OSXSAVE))
    {
      unsigned int xcrlow;
      unsigned int xcrhigh;
      asm ("xgetbv" : "=a" (xcrlow), "=d" (xcrhigh) : "c" (0));
      /* Is YMM and XMM state usable?  */
      if ((xcrlow & (bit_YMM_state | bit_XMM_state))
	  == (bit_YMM_state | bit_XMM_state))
	{
	  /* Determine if AVX is usable.  */
	  if (CPU_FEATURES_CPU_P (cpu_features, AVX))
	    {
	      cpu_features->feature[index_arch_AVX_Usable]
		|= bit_arch_AVX_Usable;
	      /* The following features depend on AVX being usable.  */
	      /* Determine if AVX2 is usable.  */
	      if (CPU_FEATURES_CPU_P (cpu_features, AVX2))
	      {
		cpu_features->feature[index_arch_AVX2_Usable]
		  |= bit_arch_AVX2_Usable;

	        /* Unaligned load with 256-bit AVX registers are faster on
	           Intel/AMD processors with AVX2.  */
	        cpu_features->feature[index_arch_AVX_Fast_Unaligned_Load]
		  |= bit_arch_AVX_Fast_Unaligned_Load;
	      }
	      /* Determine if FMA is usable.  */
	      if (CPU_FEATURES_CPU_P (cpu_features, FMA))
		cpu_features->feature[index_arch_FMA_Usable]
		  |= bit_arch_FMA_Usable;
	      /* Determine if VAES is usable.  */
	      if (CPU_FEATURES_CPU_P (cpu_features, VAES))
		cpu_features->feature[index_arch_VAES_Usable]
		  |= bit_arch_VAES_Usable;
	      /* Determine if VPCLMULQDQ is usable.  */
	      if (CPU_FEATURES_CPU_P (cpu_features, VPCLMULQDQ))
		cpu_features->feature[index_arch_VPCLMULQDQ_Usable]
		  |= bit_arch_VPCLMULQDQ_Usable;
	      /* Determine if XOP is usable.  */
	      if (CPU_FEATURES_CPU_P (cpu_features, XOP))
		cpu_features->feature[index_arch_XOP_Usable]
		  |= bit_arch_XOP_Usable;
	    }

	  /* Check if OPMASK state, upper 256-bit of ZMM0-ZMM15 and
	     ZMM16-ZMM31 state are enabled.  */
	  if ((xcrlow & (bit_Opmask_state | bit_ZMM0_15_state
			 | bit_ZMM16_31_state))
	      == (bit_Opmask_state | bit_ZMM0_15_state | bit_ZMM16_31_state))
	    {
	      /* Determine if AVX512F is usable.  */
	      if (CPU_FEATURES_CPU_P (cpu_features, AVX512F))
		{
		  cpu_features->feature[index_arch_AVX512F_Usable]
		    |= bit_arch_AVX512F_Usable;
		  /* Determine if AVX512CD is usable.  */
		  if (CPU_FEATURES_CPU_P (cpu_features, AVX512CD))
		    cpu_features->feature[index_arch_AVX512CD_Usable]
		      |= bit_arch_AVX512CD_Usable;
		  /* Determine if AVX512ER is usable.  */
		  if (CPU_FEATURES_CPU_P (cpu_features, AVX512ER))
		    cpu_features->feature[index_arch_AVX512ER_Usable]
		      |= bit_arch_AVX512ER_Usable;
		  /* Determine if AVX512PF is usable.  */
		  if (CPU_FEATURES_CPU_P (cpu_features, AVX512PF))
		    cpu_features->feature[index_arch_AVX512PF_Usable]
		      |= bit_arch_AVX512PF_Usable;
		  /* Determine if AVX512VL is usable.  */
		  if (CPU_FEATURES_CPU_P (cpu_features, AVX512VL))
		    cpu_features->feature[index_arch_AVX512VL_Usable]
		      |= bit_arch_AVX512VL_Usable;
		  /* Determine if AVX512DQ is usable.  */
		  if (CPU_FEATURES_CPU_P (cpu_features, AVX512DQ))
		    cpu_features->feature[index_arch_AVX512DQ_Usable]
		      |= bit_arch_AVX512DQ_Usable;
		  /* Determine if AVX512BW is usable.  */
		  if (CPU_FEATURES_CPU_P (cpu_features, AVX512BW))
		    cpu_features->feature[index_arch_AVX512BW_Usable]
		      |= bit_arch_AVX512BW_Usable;
		  /* Determine if AVX512_4FMAPS is usable.  */
		  if (CPU_FEATURES_CPU_P (cpu_features, AVX512_4FMAPS))
		    cpu_features->feature[index_arch_AVX512_4FMAPS_Usable]
		      |= bit_arch_AVX512_4FMAPS_Usable;
		  /* Determine if AVX512_4VNNIW is usable.  */
		  if (CPU_FEATURES_CPU_P (cpu_features, AVX512_4VNNIW))
		    cpu_features->feature[index_arch_AVX512_4VNNIW_Usable]
		      |= bit_arch_AVX512_4VNNIW_Usable;
		  /* Determine if AVX512_BITALG is usable.  */
		  if (CPU_FEATURES_CPU_P (cpu_features, AVX512_BITALG))
		    cpu_features->feature[index_arch_AVX512_BITALG_Usable]
		      |= bit_arch_AVX512_BITALG_Usable;
		  /* Determine if AVX512_IFMA is usable.  */
		  if (CPU_FEATURES_CPU_P (cpu_features, AVX512_IFMA))
		    cpu_features->feature[index_arch_AVX512_IFMA_Usable]
		      |= bit_arch_AVX512_IFMA_Usable;
		  /* Determine if AVX512_VBMI is usable.  */
		  if (CPU_FEATURES_CPU_P (cpu_features, AVX512_VBMI))
		    cpu_features->feature[index_arch_AVX512_VBMI_Usable]
		      |= bit_arch_AVX512_VBMI_Usable;
		  /* Determine if AVX512_VBMI2 is usable.  */
		  if (CPU_FEATURES_CPU_P (cpu_features, AVX512_VBMI2))
		    cpu_features->feature[index_arch_AVX512_VBMI2_Usable]
		      |= bit_arch_AVX512_VBMI2_Usable;
		  /* Determine if is AVX512_VNNI usable.  */
		  if (CPU_FEATURES_CPU_P (cpu_features, AVX512_VNNI))
		    cpu_features->feature[index_arch_AVX512_VNNI_Usable]
		      |= bit_arch_AVX512_VNNI_Usable;
		  /* Determine if AVX512_VPOPCNTDQ is usable.  */
		  if (CPU_FEATURES_CPU_P (cpu_features, AVX512_VPOPCNTDQ))
		    cpu_features->feature[index_arch_AVX512_VPOPCNTDQ_Usable]
		      |= bit_arch_AVX512_VPOPCNTDQ_Usable;
		}
	    }
	}

      /* For _dl_runtime_resolve, set xsave_state_size to xsave area
	 size + integer register save size and align it to 64 bytes.  */
      if (cpu_features->basic.max_cpuid >= 0xd)
	{
	  unsigned int eax, ebx, ecx, edx;

	  __cpuid_count (0xd, 0, eax, ebx, ecx, edx);
	  if (ebx != 0)
	    {
	      unsigned int xsave_state_full_size
		= ALIGN_UP (ebx + STATE_SAVE_OFFSET, 64);

	      cpu_features->xsave_state_size
		= xsave_state_full_size;
	      cpu_features->xsave_state_full_size
		= xsave_state_full_size;

	      /* Check if XSAVEC is available.  */
	      if (CPU_FEATURES_CPU_P (cpu_features, XSAVEC))
		{
		  unsigned int xstate_comp_offsets[32];
		  unsigned int xstate_comp_sizes[32];
		  unsigned int i;

		  xstate_comp_offsets[0] = 0;
		  xstate_comp_offsets[1] = 160;
		  xstate_comp_offsets[2] = 576;
		  xstate_comp_sizes[0] = 160;
		  xstate_comp_sizes[1] = 256;

		  for (i = 2; i < 32; i++)
		    {
		      if ((STATE_SAVE_MASK & (1 << i)) != 0)
			{
			  __cpuid_count (0xd, i, eax, ebx, ecx, edx);
			  xstate_comp_sizes[i] = eax;
			}
		      else
			{
			  ecx = 0;
			  xstate_comp_sizes[i] = 0;
			}

		      if (i > 2)
			{
			  xstate_comp_offsets[i]
			    = (xstate_comp_offsets[i - 1]
			       + xstate_comp_sizes[i -1]);
			  if ((ecx & (1 << 1)) != 0)
			    xstate_comp_offsets[i]
			      = ALIGN_UP (xstate_comp_offsets[i], 64);
			}
		    }

		  /* Use XSAVEC.  */
		  unsigned int size
		    = xstate_comp_offsets[31] + xstate_comp_sizes[31];
		  if (size)
		    {
		      cpu_features->xsave_state_size
			= ALIGN_UP (size + STATE_SAVE_OFFSET, 64);
		      cpu_features->feature[index_arch_XSAVEC_Usable]
			|= bit_arch_XSAVEC_Usable;
		    }
		}
	    }
	}
    }
}

_Static_assert (((index_arch_Fast_Unaligned_Load
		  == index_arch_Fast_Unaligned_Copy)
		 && (index_arch_Fast_Unaligned_Load
		     == index_arch_Prefer_PMINUB_for_stringop)
		 && (index_arch_Fast_Unaligned_Load
		     == index_arch_Slow_SSE4_2)
		 && (index_arch_Fast_Unaligned_Load
		     == index_arch_Fast_Rep_String)
		 && (index_arch_Fast_Unaligned_Load
		     == index_arch_Fast_Copy_Backward)),
		"Incorrect index_arch_Fast_Unaligned_Load");

static inline void
init_cpu_features (struct cpu_features *cpu_features)
{
  unsigned int ebx, ecx, edx;
  unsigned int family = 0;
  unsigned int model = 0;
  unsigned int stepping = 0;
  enum cpu_features_kind kind;

#if !HAS_CPUID
  if (__get_cpuid_max (0, 0) == 0)
    {
      kind = arch_kind_other;
      goto no_cpuid;
    }
#endif

  __cpuid (0, cpu_features->basic.max_cpuid, ebx, ecx, edx);

  /* This spells out "GenuineIntel".  */
  if (ebx == 0x756e6547 && ecx == 0x6c65746e && edx == 0x49656e69)
    {
      unsigned int extended_model;

      kind = arch_kind_intel;

      get_common_indices (cpu_features, &family, &model, &extended_model,
			  &stepping);

      get_extended_indices (cpu_features);

      if (family == 0x06)
	{
	  model += extended_model;
	  switch (model)
	    {
	    case 0x1c:
	    case 0x26:
	      /* BSF is slow on Atom.  */
	      cpu_features->feature[index_arch_Slow_BSF]
		|= bit_arch_Slow_BSF;
	      break;

	    case 0x57:
	      /* Knights Landing.  Enable Silvermont optimizations.  */

	    case 0x5c:
	    case 0x5f:
	      /* Unaligned load versions are faster than SSSE3
		 on Goldmont.  */

	    case 0x4c:
	      /* Airmont is a die shrink of Silvermont.  */

	    case 0x37:
	    case 0x4a:
	    case 0x4d:
	    case 0x5a:
	    case 0x5d:
	      /* Unaligned load versions are faster than SSSE3
		 on Silvermont.  */
	      cpu_features->feature[index_arch_Fast_Unaligned_Load]
		|= (bit_arch_Fast_Unaligned_Load
		    | bit_arch_Fast_Unaligned_Copy
		    | bit_arch_Prefer_PMINUB_for_stringop
		    | bit_arch_Slow_SSE4_2);
	      break;

	    default:
	      /* Unknown family 0x06 processors.  Assuming this is one
		 of Core i3/i5/i7 processors if AVX is available.  */
	      if (!CPU_FEATURES_CPU_P (cpu_features, AVX))
		break;
	      /* Fall through.  */

	    case 0x1a:
	    case 0x1e:
	    case 0x1f:
	    case 0x25:
	    case 0x2c:
	    case 0x2e:
	    case 0x2f:
	      /* Rep string instructions, unaligned load, unaligned copy,
		 and pminub are fast on Intel Core i3, i5 and i7.  */
	      cpu_features->feature[index_arch_Fast_Rep_String]
		|= (bit_arch_Fast_Rep_String
		    | bit_arch_Fast_Unaligned_Load
		    | bit_arch_Fast_Unaligned_Copy
		    | bit_arch_Prefer_PMINUB_for_stringop);
	      break;
	    }

	 /* Disable TSX on some Haswell processors to avoid TSX on kernels that
	    weren't updated with the latest microcode package (which disables
	    broken feature by default).  */
	 switch (model)
	    {
	    case 0x3f:
	      /* Xeon E7 v3 with stepping >= 4 has working TSX.  */
	      if (stepping >= 4)
		break;
	      /* Fall through.  */
	    case 0x3c:
	    case 0x45:
	    case 0x46:
	      /* Disable Intel TSX on Haswell processors (except Xeon E7 v3
		 with stepping >= 4) to avoid TSX on kernels that weren't
		 updated with the latest microcode package (which disables
		 broken feature by default).  */
	      cpu_features->cpuid[index_cpu_RTM].reg_RTM &= ~bit_cpu_RTM;
	      break;
	    }
	}


      /* Since AVX512ER is unique to Xeon Phi, set Prefer_No_VZEROUPPER
         if AVX512ER is available.  Don't use AVX512 to avoid lower CPU
	 frequency if AVX512ER isn't available.  */
      if (CPU_FEATURES_CPU_P (cpu_features, AVX512ER))
	cpu_features->feature[index_arch_Prefer_No_VZEROUPPER]
	  |= bit_arch_Prefer_No_VZEROUPPER;
      else
	cpu_features->feature[index_arch_Prefer_No_AVX512]
	  |= bit_arch_Prefer_No_AVX512;
    }
  /* This spells out "AuthenticAMD" or "HygonGenuine".  */
  else if ((ebx == 0x68747541 && ecx == 0x444d4163 && edx == 0x69746e65)
	   || (ebx == 0x6f677948 && ecx == 0x656e6975 && edx == 0x6e65476e))
    {
      unsigned int extended_model;

      kind = arch_kind_amd;

      get_common_indices (cpu_features, &family, &model, &extended_model,
			  &stepping);

      get_extended_indices (cpu_features);

      ecx = cpu_features->cpuid[COMMON_CPUID_INDEX_1].ecx;

      if (HAS_ARCH_FEATURE (AVX_Usable))
	{
	  /* Since the FMA4 bit is in COMMON_CPUID_INDEX_80000001 and
	     FMA4 requires AVX, determine if FMA4 is usable here.  */
	  if (CPU_FEATURES_CPU_P (cpu_features, FMA4))
	    cpu_features->feature[index_arch_FMA4_Usable]
	      |= bit_arch_FMA4_Usable;
	}

      if (family == 0x15)
	{
	  /* "Excavator"   */
	  if (model >= 0x60 && model <= 0x7f)
	  {
	    cpu_features->feature[index_arch_Fast_Unaligned_Load]
	      |= (bit_arch_Fast_Unaligned_Load
		  | bit_arch_Fast_Copy_Backward);

	    /* Unaligned AVX loads are slower.*/
	    cpu_features->feature[index_arch_AVX_Fast_Unaligned_Load]
		  &= ~bit_arch_AVX_Fast_Unaligned_Load;
	  }
	}
    }
  else
    {
      kind = arch_kind_other;
      get_common_indices (cpu_features, NULL, NULL, NULL, NULL);
    }

  /* Support i586 if CX8 is available.  */
  if (CPU_FEATURES_CPU_P (cpu_features, CX8))
    cpu_features->feature[index_arch_I586] |= bit_arch_I586;

  /* Support i686 if CMOV is available.  */
  if (CPU_FEATURES_CPU_P (cpu_features, CMOV))
    cpu_features->feature[index_arch_I686] |= bit_arch_I686;

#if !HAS_CPUID
no_cpuid:
#endif

  cpu_features->basic.kind = kind;
  cpu_features->basic.family = family;
  cpu_features->basic.model = model;
  cpu_features->basic.stepping = stepping;

#if HAVE_TUNABLES
  TUNABLE_GET (hwcaps, tunable_val_t *, TUNABLE_CALLBACK (set_hwcaps));
  cpu_features->non_temporal_threshold
    = TUNABLE_GET (x86_non_temporal_threshold, long int, NULL);
  cpu_features->data_cache_size
    = TUNABLE_GET (x86_data_cache_size, long int, NULL);
  cpu_features->shared_cache_size
    = TUNABLE_GET (x86_shared_cache_size, long int, NULL);
#endif

  /* Reuse dl_platform, dl_hwcap and dl_hwcap_mask for x86.  */
#if !HAVE_TUNABLES && defined SHARED
  /* The glibc.cpu.hwcap_mask tunable is initialized already, so no need to do
     this.  */
  GLRO(dl_hwcap_mask) = HWCAP_IMPORTANT;
#endif

#ifdef __x86_64__
  GLRO(dl_hwcap) = HWCAP_X86_64;
  if (cpu_features->basic.kind == arch_kind_intel)
    {
      const char *platform = NULL;

      if (CPU_FEATURES_ARCH_P (cpu_features, AVX512F_Usable)
	  && CPU_FEATURES_CPU_P (cpu_features, AVX512CD))
	{
	  if (CPU_FEATURES_CPU_P (cpu_features, AVX512ER))
	    {
	      if (CPU_FEATURES_CPU_P (cpu_features, AVX512PF))
		platform = "xeon_phi";
	    }
	  else
	    {
	      if (CPU_FEATURES_CPU_P (cpu_features, AVX512BW)
		  && CPU_FEATURES_CPU_P (cpu_features, AVX512DQ)
		  && CPU_FEATURES_CPU_P (cpu_features, AVX512VL))
		GLRO(dl_hwcap) |= HWCAP_X86_AVX512_1;
	    }
	}

      if (platform == NULL
	  && CPU_FEATURES_ARCH_P (cpu_features, AVX2_Usable)
	  && CPU_FEATURES_ARCH_P (cpu_features, FMA_Usable)
	  && CPU_FEATURES_CPU_P (cpu_features, BMI1)
	  && CPU_FEATURES_CPU_P (cpu_features, BMI2)
	  && CPU_FEATURES_CPU_P (cpu_features, LZCNT)
	  && CPU_FEATURES_CPU_P (cpu_features, MOVBE)
	  && CPU_FEATURES_CPU_P (cpu_features, POPCNT))
	platform = "haswell";

      if (platform != NULL)
	GLRO(dl_platform) = platform;
    }
#else
  GLRO(dl_hwcap) = 0;
  if (CPU_FEATURES_CPU_P (cpu_features, SSE2))
    GLRO(dl_hwcap) |= HWCAP_X86_SSE2;

  if (CPU_FEATURES_ARCH_P (cpu_features, I686))
    GLRO(dl_platform) = "i686";
  else if (CPU_FEATURES_ARCH_P (cpu_features, I586))
    GLRO(dl_platform) = "i586";
#endif

#if CET_ENABLED
# if HAVE_TUNABLES
  TUNABLE_GET (x86_ibt, tunable_val_t *,
	       TUNABLE_CALLBACK (set_x86_ibt));
  TUNABLE_GET (x86_shstk, tunable_val_t *,
	       TUNABLE_CALLBACK (set_x86_shstk));
# endif

  /* Check CET status.  */
  unsigned int cet_status = get_cet_status ();

  if (cet_status)
    {
      GL(dl_x86_feature_1)[0] = cet_status;

# ifndef SHARED
      /* Check if IBT and SHSTK are enabled by kernel.  */
      if ((cet_status & GNU_PROPERTY_X86_FEATURE_1_IBT)
	  || (cet_status & GNU_PROPERTY_X86_FEATURE_1_SHSTK))
	{
	  /* Disable IBT and/or SHSTK if they are enabled by kernel, but
	     disabled by environment variable:

	     GLIBC_TUNABLES=glibc.cpu.hwcaps=-IBT,-SHSTK
	   */
	  unsigned int cet_feature = 0;
	  if (!HAS_CPU_FEATURE (IBT))
	    cet_feature |= GNU_PROPERTY_X86_FEATURE_1_IBT;
	  if (!HAS_CPU_FEATURE (SHSTK))
	    cet_feature |= GNU_PROPERTY_X86_FEATURE_1_SHSTK;

	  if (cet_feature)
	    {
	      int res = dl_cet_disable_cet (cet_feature);

	      /* Clear the disabled bits in dl_x86_feature_1.  */
	      if (res == 0)
		GL(dl_x86_feature_1)[0] &= ~cet_feature;
	    }

	  /* Lock CET if IBT or SHSTK is enabled in executable.  Don't
	     lock CET if SHSTK is enabled permissively.  */
	  if (((GL(dl_x86_feature_1)[1] >> CET_MAX)
	       & ((1 << CET_MAX) - 1))
	       != CET_PERMISSIVE)
	    dl_cet_lock_cet ();
	}
# endif
    }
#endif
}