1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
|
/* Pythagorean addition using floats
Copyright (C) 2011-2013 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Adhemerval Zanella <azanella@br.ibm.com>, 2011
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If
not, see <http://www.gnu.org/licenses/>. */
#include <math.h>
#include <math_private.h>
#include <stdint.h>
static const float two30 = 1.0737418e09;
/* __ieee754_hypotf(x,y)
This a FP only version without any FP->INT conversion.
It is similar to default C version, making appropriates
overflow and underflows checks as using double precision
instead of scaling. */
#ifdef _ARCH_PWR7
/* POWER7 isinf and isnan optimizations are fast. */
# define TEST_INF_NAN(x, y) \
if (isinff(x) || isinff(y)) \
return INFINITY; \
if (isnanf(x) || isnanf(y)) \
return NAN;
# else
/* For POWER6 and below isinf/isnan triggers LHS and PLT calls are
* costly (especially for POWER6). */
# define GET_TWO_FLOAT_WORD(f1,f2,i1,i2) \
do { \
ieee_float_shape_type gf_u1; \
ieee_float_shape_type gf_u2; \
gf_u1.value = (f1); \
gf_u2.value = (f2); \
(i1) = gf_u1.word; \
(i2) = gf_u2.word; \
} while (0)
# define TEST_INF_NAN(x, y) \
do { \
int32_t hx, hy; \
GET_TWO_FLOAT_WORD(x, y, hx, hy); \
if (hy > hx) { \
uint32_t ht = hx; hx = hy; hy = ht; \
} \
if (hx >= 0x7f800000) { \
if (hx == 0x7f800000 || hy == 0x7f800000) \
return INFINITY; \
return NAN; \
} \
} while (0)
#endif
float
__ieee754_hypotf (float x, float y)
{
x = fabsf (x);
y = fabsf (y);
TEST_INF_NAN (x, y);
if (y > x)
{
float t = y;
y = x;
x = t;
}
if (y == 0.0 || (x / y) > two30)
{
return x + y;
}
return __ieee754_sqrt ((double) x * x + (double) y * y);
}
strong_alias (__ieee754_hypotf, __hypotf_finite)
|