about summary refs log tree commit diff
path: root/sysdeps/mach/hurd/spawni.c
blob: e6b032b8a4e893bb8c5f05bdd767895e9baf05b4 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
/* spawn a new process running an executable.  Hurd version.
   Copyright (C) 2001-2019 Free Software Foundation, Inc.
   This file is part of the GNU C Library.

   The GNU C Library is free software; you can redistribute it and/or
   modify it under the terms of the GNU Lesser General Public License as
   published by the Free Software Foundation; either version 2.1 of the
   License, or (at your option) any later version.

   The GNU C Library is distributed in the hope that it will be useful,
   but WITHOUT ANY WARRANTY; without even the implied warranty of
   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
   Lesser General Public License for more details.

   You should have received a copy of the GNU Lesser General Public
   License along with the GNU C Library; see the file COPYING.LIB.  If
   not, see <https://www.gnu.org/licenses/>.  */

#include <errno.h>
#include <fcntl.h>
#include <paths.h>
#include <spawn.h>
#include <stdlib.h>
#include <string.h>
#include <stdio.h>
#include <unistd.h>
#include <hurd.h>
#include <hurd/signal.h>
#include <hurd/fd.h>
#include <hurd/id.h>
#include <hurd/lookup.h>
#include <hurd/resource.h>
#include <assert.h>
#include <argz.h>
#include "spawn_int.h"

/* Spawn a new process executing PATH with the attributes describes in *ATTRP.
   Before running the process perform the actions described in FILE-ACTIONS. */
int
__spawni (pid_t *pid, const char *file,
	  const posix_spawn_file_actions_t *file_actions,
	  const posix_spawnattr_t *attrp,
	  char *const argv[], char *const envp[],
	  int xflags)
{
  pid_t new_pid;
  char *path, *p, *name;
  char *concat_name = NULL;
  const char *relpath, *abspath;
  int res;
  size_t len;
  size_t pathlen;
  short int flags;

  /* The generic POSIX.1 implementation of posix_spawn uses fork and exec.
     In traditional POSIX systems (Unix, Linux, etc), the only way to
     create a new process is by fork, which also copies all the things from
     the parent process that will be immediately wiped and replaced by the
     exec.

     This Hurd implementation works by doing an exec on a fresh task,
     without ever doing all the work of fork.  The only work done by fork
     that remains visible after an exec is registration with the proc
     server, and the inheritance of various values and ports.  All those
     inherited values and ports are what get collected up and passed in the
     file_exec_paths RPC by an exec call.  So we do the proc server
     registration here, following the model of fork (see fork.c).  We then
     collect up the inherited values and ports from this (parent) process
     following the model of exec (see hurd/hurdexec.c), modify or replace each
     value that fork would (plus the specific changes demanded by ATTRP and
     FILE_ACTIONS), and make the file_exec_paths RPC on the requested
     executable file with the child process's task port rather than our own.
     This should be indistinguishable from the fork + exec implementation,
     except that all errors will be detected here (in the parent process)
     and return proper errno codes rather than the child dying with 127.

     XXX The one exception to this supposed indistinguishableness is that
     when posix_spawn_file_actions_addopen has been used, the parent
     process can do various filesystem RPCs on the child's behalf, rather
     than the child process doing it.  If these block due to a broken or
     malicious filesystem server or just a blocked network fs or a serial
     port waiting for carrier detect (!!), the parent's posix_spawn call
     can block arbitrarily rather than just the child blocking.  Possible
     solutions include:
     * punt to plain fork + exec implementation if addopen was used
     ** easy to do
     ** gives up all benefits of this implementation in that case
     * if addopen was used, don't do any file actions at all here;
       instead, exec an installed helper program e.g.:
	/libexec/spawn-helper close 3 dup2 1 2 open 0 /file 0x123 0666 exec /bin/foo foo a1 a2
     ** extra exec might be more or less overhead than fork
     * could do some weird half-fork thing where the child would inherit
       our vm and run some code here, but not do the full work of fork

     XXX Actually, the parent opens the executable file on behalf of
     the child, and that has all the same issues.

     I am favoring the half-fork solution.  That is, we do task_create with
     vm inheritance, and we setjmp/longjmp the child like fork does.  But
     rather than all the fork hair, the parent just packs up init/dtable
     ports and does a single IPC to a receive right inserted in the child.  */

  error_t err;
  task_t task;
  file_t execfile;
  process_t proc;
  auth_t auth;
  int ints[INIT_INT_MAX];
  file_t *dtable;
  unsigned int dtablesize, orig_dtablesize, i;
  struct hurd_port **dtable_cells;
  char *dtable_cloexec;
  struct hurd_userlink *ulink_dtable = NULL;
  struct hurd_sigstate *ss;

  /* Child current working dir */
  file_t ccwdir = MACH_PORT_NULL;

  /* For POSIX_SPAWN_RESETIDS, this reauthenticates our root/current
     directory ports with the new AUTH port.  */
  file_t rcrdir = MACH_PORT_NULL, rcwdir = MACH_PORT_NULL;
  error_t reauthenticate (int which, file_t *result)
    {
      error_t err;
      mach_port_t ref;
      if (*result != MACH_PORT_NULL)
	return 0;
      ref = __mach_reply_port ();
      if (which == INIT_PORT_CWDIR && ccwdir != MACH_PORT_NULL)
	{
	  err = __io_reauthenticate (ccwdir, ref, MACH_MSG_TYPE_MAKE_SEND);
	  if (!err)
	    err = __auth_user_authenticate (auth,
					    ref, MACH_MSG_TYPE_MAKE_SEND,
					    result);
	}
      else
	err = HURD_PORT_USE
	  (&_hurd_ports[which],
	   ({
	     err = __io_reauthenticate (port, ref, MACH_MSG_TYPE_MAKE_SEND);
	     if (!err)
	       err = __auth_user_authenticate (auth,
					       ref, MACH_MSG_TYPE_MAKE_SEND,
					       result);
	     err;
	   }));
      __mach_port_destroy (__mach_task_self (), ref);
      return err;
    }

  /* Reauthenticate one of our file descriptors for the child.  A null
     element of DTABLE_CELLS indicates a descriptor that was already
     reauthenticated, or was newly opened on behalf of the child.  */
  error_t reauthenticate_fd (int fd)
    {
      if (dtable_cells[fd] != NULL)
	{
	  file_t newfile;
	  mach_port_t ref = __mach_reply_port ();
	  error_t err = __io_reauthenticate (dtable[fd],
					     ref, MACH_MSG_TYPE_MAKE_SEND);
	  if (!err)
	    err = __auth_user_authenticate (auth,
					    ref, MACH_MSG_TYPE_MAKE_SEND,
					    &newfile);
	  __mach_port_destroy (__mach_task_self (), ref);
	  if (err)
	    return err;
	  _hurd_port_free (dtable_cells[fd], &ulink_dtable[fd], dtable[fd]);
	  dtable_cells[fd] = NULL;
	  dtable[fd] = newfile;
	}
      return 0;
    }

  /* These callbacks are for looking up file names on behalf of the child.  */
  error_t child_init_port (int which, error_t (*operate) (mach_port_t))
    {
      if (flags & POSIX_SPAWN_RESETIDS)
	switch (which)
	  {
	  case INIT_PORT_AUTH:
	    return (*operate) (auth);
	  case INIT_PORT_CRDIR:
	    return (reauthenticate (INIT_PORT_CRDIR, &rcrdir)
		    ?: (*operate) (rcrdir));
	  case INIT_PORT_CWDIR:
	    return (reauthenticate (INIT_PORT_CWDIR, &rcwdir)
		    ?: (*operate) (rcwdir));
	  }
      else
	switch (which)
	  {
	  case INIT_PORT_CWDIR:
	    if (ccwdir != MACH_PORT_NULL)
	      return (*operate) (ccwdir);
	    break;
	  }
      assert (which != INIT_PORT_PROC);
      return _hurd_ports_use (which, operate);
    }
  file_t child_fd (int fd)
    {
      if ((unsigned int) fd < dtablesize && dtable[fd] != MACH_PORT_NULL)
	{
	  if (flags & POSIX_SPAWN_RESETIDS)
	    {
	      /* Reauthenticate this descriptor right now,
		 since it is going to be used on behalf of the child.  */
	      errno = reauthenticate_fd (fd);
	      if (errno)
		return MACH_PORT_NULL;
	    }
	  __mach_port_mod_refs (__mach_task_self (), dtable[fd],
				MACH_PORT_RIGHT_SEND, +1);
	  return dtable[fd];
	}
      errno = EBADF;
      return MACH_PORT_NULL;
    }
  inline error_t child_lookup (const char *file, int oflag, mode_t mode,
			       file_t *result)
    {
      return __hurd_file_name_lookup (&child_init_port, &child_fd, 0,
				      file, oflag, mode, result);
    }
  auto error_t child_chdir (const char *name)
    {
      file_t new_ccwdir;

      /* Append trailing "/." to directory name to force ENOTDIR if
	 it's not a directory and EACCES if we don't have search
	 permission.  */
      len = strlen (name);
      const char *lookup = name;
      if (len >= 2 && name[len - 2] == '/' && name[len - 1] == '.')
	lookup = name;
      else if (len == 0)
	/* Special-case empty file name according to POSIX.  */
	return __hurd_fail (ENOENT);
      else
	{
	  char *n = alloca (len + 3);
	  memcpy (n, name, len);
	  n[len] = '/';
	  n[len + 1] = '.';
	  n[len + 2] = '\0';
	  lookup = n;
	}

      error_t err = child_lookup (lookup, 0, 0, &new_ccwdir);
      if (!err)
	{
	  if (ccwdir != MACH_PORT_NULL)
	    __mach_port_deallocate (__mach_task_self (), ccwdir);
	  ccwdir = new_ccwdir;
	}

      return err;
    }
  inline error_t child_lookup_under (file_t startdir, const char *file,
				     int oflag, mode_t mode, file_t *result)
    {
      error_t use_init_port (int which, error_t (*operate) (mach_port_t))
	{
	  return (which == INIT_PORT_CWDIR ? (*operate) (startdir)
		  : child_init_port (which, operate));
	}

      return __hurd_file_name_lookup (&use_init_port, &child_fd, 0,
				      file, oflag, mode, result);
    }
  auto error_t child_fchdir (int fd)
    {
      file_t new_ccwdir;
      error_t err;

      if ((unsigned int)fd >= dtablesize
	  || dtable[fd] == MACH_PORT_NULL)
	return EBADF;

      /* We look up "." to force ENOTDIR if it's not a directory and EACCES if
         we don't have search permission.  */
      if (dtable_cells[fd] != NULL)
	  err = HURD_PORT_USE (dtable_cells[fd],
		    ({
		      child_lookup_under (port, ".", O_NOTRANS, 0, &new_ccwdir);
		     }));
      else
	  err = child_lookup_under (dtable[fd], ".", O_NOTRANS, 0, &new_ccwdir);

      if (!err)
	{
	  if (ccwdir != MACH_PORT_NULL)
	    __mach_port_deallocate (__mach_task_self (), ccwdir);
	  ccwdir = new_ccwdir;
	}

      return err;
    }


  /* Do this once.  */
  flags = attrp == NULL ? 0 : attrp->__flags;

  /* Generate the new process.  We create a task that does not inherit our
     memory, and then register it as our child like fork does.  See fork.c
     for comments about the sequencing of these proc operations.  */

  err = __task_create (__mach_task_self (),
#ifdef KERN_INVALID_LEDGER
		       NULL, 0,	/* OSF Mach */
#endif
		       0, &task);
  if (err)
    return __hurd_fail (err);
  // From here down we must deallocate TASK and PROC before returning.
  proc = MACH_PORT_NULL;
  auth = MACH_PORT_NULL;
  err = __USEPORT (PROC, __proc_task2pid (port, task, &new_pid));
  if (!err)
    err = __USEPORT (PROC, __proc_task2proc (port, task, &proc));
  if (!err)
    err = __USEPORT (PROC, __proc_child (port, task));
  if (err)
    goto out;

  /* Load up the ints to give the new program.  */
  memset (ints, 0, sizeof ints);
  ints[INIT_UMASK] = _hurd_umask;
  ints[INIT_TRACEMASK] = _hurdsig_traced;

  ss = _hurd_self_sigstate ();

  assert (! __spin_lock_locked (&ss->critical_section_lock));
  __spin_lock (&ss->critical_section_lock);

  __spin_lock (&ss->lock);
  ints[INIT_SIGMASK] = ss->blocked;
  ints[INIT_SIGPENDING] = ss->pending;
  ints[INIT_SIGIGN] = 0;
  /* Unless we were asked to reset all handlers to SIG_DFL,
     pass down the set of signals that were set to SIG_IGN.  */
  if ((flags & POSIX_SPAWN_SETSIGDEF) == 0)
    for (i = 1; i < NSIG; ++i)
      if (ss->actions[i].sa_handler == SIG_IGN)
	ints[INIT_SIGIGN] |= __sigmask (i);

  /* We hold the sigstate lock until the exec has failed so that no signal
     can arrive between when we pack the blocked and ignored signals, and
     when the exec actually happens.  A signal handler could change what
     signals are blocked and ignored.  Either the change will be reflected
     in the exec, or the signal will never be delivered.  Setting the
     critical section flag avoids anything we call trying to acquire the
     sigstate lock.  */

  __spin_unlock (&ss->lock);

  /* Set signal mask.  */
  if ((flags & POSIX_SPAWN_SETSIGMASK) != 0)
    ints[INIT_SIGMASK] = attrp->__ss;

#ifdef _POSIX_PRIORITY_SCHEDULING
  /* Set the scheduling algorithm and parameters.  */
# error implement me
  if ((flags & (POSIX_SPAWN_SETSCHEDPARAM | POSIX_SPAWN_SETSCHEDULER))
      == POSIX_SPAWN_SETSCHEDPARAM)
    {
      if (__sched_setparam (0, &attrp->__sp) == -1)
	_exit (SPAWN_ERROR);
    }
  else if ((flags & POSIX_SPAWN_SETSCHEDULER) != 0)
    {
      if (__sched_setscheduler (0, attrp->__policy,
				(flags & POSIX_SPAWN_SETSCHEDPARAM) != 0
				? &attrp->__sp : NULL) == -1)
	_exit (SPAWN_ERROR);
    }
#endif

  if (!err && (flags & POSIX_SPAWN_SETSID) != 0)
    err = __proc_setsid (proc);

  /* Set the process group ID.  */
  if (!err && (flags & POSIX_SPAWN_SETPGROUP) != 0)
    err = __proc_setpgrp (proc, new_pid, attrp->__pgrp);

  /* Set the effective user and group IDs.  */
  if (!err && (flags & POSIX_SPAWN_RESETIDS) != 0)
    {
      /* We need a different auth port for the child.  */

      __mutex_lock (&_hurd_id.lock);
      err = _hurd_check_ids (); /* Get _hurd_id up to date.  */
      if (!err && _hurd_id.rid_auth == MACH_PORT_NULL)
	{
	  /* Set up _hurd_id.rid_auth.  This is a special auth server port
	     which uses the real uid and gid (the first aux uid and gid) as
	     the only effective uid and gid.  */

	  if (_hurd_id.aux.nuids < 1 || _hurd_id.aux.ngids < 1)
	    /* We do not have a real UID and GID.  Lose, lose, lose!  */
	    err = EGRATUITOUS;

	  /* Create a new auth port using our real UID and GID (the first
	     auxiliary UID and GID) as the only effective IDs.  */
	  if (!err)
	    err = __USEPORT (AUTH,
			     __auth_makeauth (port,
					      NULL, MACH_MSG_TYPE_COPY_SEND, 0,
					      _hurd_id.aux.uids, 1,
					      _hurd_id.aux.uids,
					      _hurd_id.aux.nuids,
					      _hurd_id.aux.gids, 1,
					      _hurd_id.aux.gids,
					      _hurd_id.aux.ngids,
					      &_hurd_id.rid_auth));
	}
      if (!err)
	{
	  /* Use the real-ID auth port in place of the normal one.  */
	  assert (_hurd_id.rid_auth != MACH_PORT_NULL);
	  auth = _hurd_id.rid_auth;
	  __mach_port_mod_refs (__mach_task_self (), auth,
				MACH_PORT_RIGHT_SEND, +1);
	}
      __mutex_unlock (&_hurd_id.lock);
    }
  else
    /* Copy our existing auth port.  */
    err = __USEPORT (AUTH, __mach_port_mod_refs (__mach_task_self (),
						 (auth = port),
						 MACH_PORT_RIGHT_SEND, +1));

  if (err)
    goto out;

  /* Pack up the descriptor table to give the new program.
     These descriptors will need to be reauthenticated below
     if POSIX_SPAWN_RESETIDS is set.  */
  __mutex_lock (&_hurd_dtable_lock);
  dtablesize = _hurd_dtablesize;
  orig_dtablesize = _hurd_dtablesize;
  dtable = __alloca (dtablesize * sizeof (dtable[0]));
  ulink_dtable = __alloca (dtablesize * sizeof (ulink_dtable[0]));
  dtable_cells = __alloca (dtablesize * sizeof (dtable_cells[0]));
  dtable_cloexec = __alloca (orig_dtablesize);
  for (i = 0; i < dtablesize; ++i)
    {
      struct hurd_fd *const d = _hurd_dtable[i];
      if (d == NULL)
	{
	  dtable[i] = MACH_PORT_NULL;
	  dtable_cells[i] = NULL;
	  continue;
	}
      /* Note that this might return MACH_PORT_NULL.  */
      dtable[i] = _hurd_port_get (&d->port, &ulink_dtable[i]);
      dtable_cells[i] = &d->port;
      dtable_cloexec[i] = (d->flags & FD_CLOEXEC) != 0;
    }
  __mutex_unlock (&_hurd_dtable_lock);

  /* Safe to let signals happen now.  */
  _hurd_critical_section_unlock (ss);

  /* Execute the file actions.  */
  if (file_actions != NULL)
    for (i = 0; i < file_actions->__used; ++i)
      {
	/* Close a file descriptor in the child.  */
	error_t do_close (int fd)
	  {
	    if ((unsigned int)fd < dtablesize
		&& dtable[fd] != MACH_PORT_NULL)
	      {
		if (dtable_cells[fd] == NULL)
		  __mach_port_deallocate (__mach_task_self (), dtable[fd]);
		else
		  {
		    _hurd_port_free (dtable_cells[fd],
				     &ulink_dtable[fd], dtable[fd]);
		  }
		dtable_cells[fd] = NULL;
		dtable[fd] = MACH_PORT_NULL;
		return 0;
	      }
	    return EBADF;
	  }

	/* Make sure the dtable can hold NEWFD.  */
#define EXPAND_DTABLE(newfd)						      \
	({								      \
	  if ((unsigned int)newfd >= dtablesize				      \
	      && newfd < _hurd_rlimits[RLIMIT_OFILE].rlim_cur)		      \
	    {								      \
	      /* We need to expand the dtable for the child.  */	      \
	      NEW_TABLE (dtable, newfd);				      \
	      NEW_ULINK_TABLE (ulink_dtable, newfd);			      \
	      NEW_TABLE (dtable_cells, newfd);				      \
	      dtablesize = newfd + 1;					      \
	    }								      \
	  ((unsigned int)newfd < dtablesize ? 0 : EMFILE);		      \
	})
#define NEW_TABLE(x, newfd) \
  do { __typeof (x) new_##x = __alloca ((newfd + 1) * sizeof (x[0]));	      \
  memcpy (new_##x, x, dtablesize * sizeof (x[0]));			      \
  memset (&new_##x[dtablesize], 0, (newfd + 1 - dtablesize) * sizeof (x[0])); \
  x = new_##x; } while (0)
#define NEW_ULINK_TABLE(x, newfd) \
  do { __typeof (x) new_##x = __alloca ((newfd + 1) * sizeof (x[0]));	      \
  unsigned i;								      \
  for (i = 0; i < dtablesize; i++)					      \
    if (dtable_cells[i] != NULL)					      \
      _hurd_port_move (dtable_cells[i], &new_##x[i], &x[i]);		      \
    else								      \
      memset (&new_##x[i], 0, sizeof (new_##x[i]));			      \
  memset (&new_##x[dtablesize], 0, (newfd + 1 - dtablesize) * sizeof (x[0])); \
  x = new_##x; } while (0)

	struct __spawn_action *action = &file_actions->__actions[i];

	switch (action->tag)
	  {
	  case spawn_do_close:
	    err = do_close (action->action.close_action.fd);
	    break;

	  case spawn_do_dup2:
	    if ((unsigned int)action->action.dup2_action.fd < dtablesize
		&& dtable[action->action.dup2_action.fd] != MACH_PORT_NULL)
	      {
		const int fd = action->action.dup2_action.fd;
		const int newfd = action->action.dup2_action.newfd;
		// dup2 always clears any old FD_CLOEXEC flag on the new fd.
		if (newfd < orig_dtablesize)
		  dtable_cloexec[newfd] = 0;
		if (fd == newfd)
		  // Same is same as same was.
		  break;
		err = EXPAND_DTABLE (newfd);
		if (!err)
		  {
		    /* Close the old NEWFD and replace it with FD's
		       contents, which can be either an original
		       descriptor (DTABLE_CELLS[FD] != 0) or a new
		       right that we acquired in this function.  */
		    do_close (newfd);
		    dtable_cells[newfd] = dtable_cells[fd];
		    if (dtable_cells[newfd] != NULL)
		      dtable[newfd] = _hurd_port_get (dtable_cells[newfd],
						      &ulink_dtable[newfd]);
		    else
		      {
			dtable[newfd] = dtable[fd];
			err = __mach_port_mod_refs (__mach_task_self (),
						    dtable[fd],
						    MACH_PORT_RIGHT_SEND, +1);
		      }
		  }
	      }
	    else
	      // The old FD specified was bogus.
	      err = EBADF;
	    break;

	  case spawn_do_open:
	    /* Open a file on behalf of the child.

	       XXX note that this can subject the parent to arbitrary
	       delays waiting for the files to open.  I don't know what the
	       spec says about this.  If it's not permissible, then this
	       whole forkless implementation is probably untenable.  */
	    {
	      const int fd = action->action.open_action.fd;

	      do_close (fd);
	      if (fd < orig_dtablesize)
		dtable_cloexec[fd] = 0;
	      err = EXPAND_DTABLE (fd);
	      if (err)
		break;

	      err = child_lookup (action->action.open_action.path,
				  action->action.open_action.oflag,
				  action->action.open_action.mode,
				  &dtable[fd]);
	      dtable_cells[fd] = NULL;
	      break;
	    }

	  case spawn_do_chdir:
	    err = child_chdir (action->action.chdir_action.path);
	    break;

	  case spawn_do_fchdir:
	    err = child_fchdir (action->action.fchdir_action.fd);
	    break;
	  }

	if (err)
	  goto out;
      }

  /* Only now can we perform FD_CLOEXEC.  We had to leave the descriptors
     unmolested for the file actions to use.  Note that the DTABLE_CLOEXEC
     array is never expanded by file actions, so it might now have fewer
     than DTABLESIZE elements.  */
  for (i = 0; i < orig_dtablesize; ++i)
    if (dtable[i] != MACH_PORT_NULL && dtable_cloexec[i])
      {
	assert (dtable_cells[i] != NULL);
	_hurd_port_free (dtable_cells[i], &ulink_dtable[i], dtable[i]);
	dtable[i] = MACH_PORT_NULL;
      }

  /* Prune trailing null ports from the descriptor table.  */
  while (dtablesize > 0 && dtable[dtablesize - 1] == MACH_PORT_NULL)
    --dtablesize;

  if (flags & POSIX_SPAWN_RESETIDS)
    {
      /* Reauthenticate all the child's ports with its new auth handle.  */

      mach_port_t ref;
      process_t newproc;

      /* Reauthenticate with the proc server.  */
      ref = __mach_reply_port ();
      err = __proc_reauthenticate (proc, ref, MACH_MSG_TYPE_MAKE_SEND);
      if (!err)
	err = __auth_user_authenticate (auth,
					ref, MACH_MSG_TYPE_MAKE_SEND,
					&newproc);
      __mach_port_destroy (__mach_task_self (), ref);
      if (!err)
	{
	  __mach_port_deallocate (__mach_task_self (), proc);
	  proc = newproc;
	}

      if (!err)
	err = reauthenticate (INIT_PORT_CRDIR, &rcrdir);
      if (!err)
	err = reauthenticate (INIT_PORT_CWDIR, &rcwdir);

      /* We must reauthenticate all the fds except those that came from
	 `spawn_do_open' file actions, which were opened using the child's
	 auth port to begin with.  */
      for (i = 0; !err && i < dtablesize; ++i)
	err = reauthenticate_fd (i);
    }
  if (err)
    goto out;

  /* Now we are ready to open the executable file using the child's ports.
     We do this after performing all the file actions so the order of
     events is the same as for a fork, exec sequence.  This affects things
     like the meaning of a /dev/fd file name, as well as which error
     conditions are diagnosed first and what side effects (file creation,
     etc) can be observed before what errors.  */

  if ((xflags & SPAWN_XFLAGS_USE_PATH) == 0 || strchr (file, '/') != NULL)
    /* The FILE parameter is actually a path.  */
    err = child_lookup (relpath = file, O_EXEC, 0, &execfile);
  else
    {
      /* We have to search for FILE on the path.  */
      path = getenv ("PATH");
      if (path == NULL)
	{
	  /* There is no `PATH' in the environment.
	     The default search path is the current directory
	     followed by the path `confstr' returns for `_CS_PATH'.  */
	  len = __confstr (_CS_PATH, (char *) NULL, 0);
	  path = (char *) __alloca (1 + len);
	  path[0] = ':';
	  (void) __confstr (_CS_PATH, path + 1, len);
	}

      len = strlen (file) + 1;
      pathlen = strlen (path);
      name = __alloca (pathlen + len + 1);
      /* Copy the file name at the top.  */
      name = (char *) memcpy (name + pathlen + 1, file, len);
      /* And add the slash.  */
      *--name = '/';

      p = path;
      do
	{
	  char *startp;

	  path = p;
	  p = __strchrnul (path, ':');

	  if (p == path)
	    /* Two adjacent colons, or a colon at the beginning or the end
	       of `PATH' means to search the current directory.  */
	    startp = name + 1;
	  else
	    startp = (char *) memcpy (name - (p - path), path, p - path);

	  /* Try to open this file name.  */
	  err = child_lookup (startp, O_EXEC, 0, &execfile);
	  switch (err)
	    {
	    case EACCES:
	    case ENOENT:
	    case ESTALE:
	    case ENOTDIR:
	      /* Those errors indicate the file is missing or not executable
		 by us, in which case we want to just try the next path
		 directory.  */
	      continue;

	    case 0:		/* Success! */
	    default:
	      /* Some other error means we found an executable file, but
		 something went wrong executing it; return the error to our
		 caller.  */
	      break;
	    }

	  // We only get here when we are done looking for the file.
	  relpath = startp;
	  break;
	}
      while (*p++ != '\0');
    }
  if (err)
    goto out;

  if (relpath[0] == '/')
    {
      /* Already an absolute path */
      abspath = relpath;
    }
  else
    {
      /* Relative path */
      char *cwd = __getcwd (NULL, 0);
      if (cwd == NULL)
	goto out;

      res = __asprintf (&concat_name, "%s/%s", cwd, relpath);
      free (cwd);
      if (res == -1)
	goto out;

      abspath = concat_name;
    }

  /* Almost there!  */
  {
    mach_port_t ports[_hurd_nports];
    struct hurd_userlink ulink_ports[_hurd_nports];
    char *args = NULL, *env = NULL;
    size_t argslen = 0, envlen = 0;

    inline error_t exec (file_t file)
      {
	error_t err = __file_exec_paths
	  (file, task,
	   __sigismember (&_hurdsig_traced, SIGKILL) ? EXEC_SIGTRAP : 0,
	   relpath, abspath, args, argslen, env, envlen,
	   dtable, MACH_MSG_TYPE_COPY_SEND, dtablesize,
	   ports, MACH_MSG_TYPE_COPY_SEND, _hurd_nports,
	   ints, INIT_INT_MAX,
	   NULL, 0, NULL, 0);

	/* Fallback for backwards compatibility.  This can just be removed
	   when __file_exec goes away.  */
	if (err == MIG_BAD_ID)
	  return __file_exec (file, task,
			      (__sigismember (&_hurdsig_traced, SIGKILL)
			      ? EXEC_SIGTRAP : 0),
			      args, argslen, env, envlen,
			      dtable, MACH_MSG_TYPE_COPY_SEND, dtablesize,
			      ports, MACH_MSG_TYPE_COPY_SEND, _hurd_nports,
			      ints, INIT_INT_MAX,
			      NULL, 0, NULL, 0);

	return err;
      }

    /* Now we are out of things that can fail before the file_exec RPC,
       for which everything else must be prepared.  The only thing left
       to do is packing up the argument and environment strings,
       and the array of init ports.  */

    if (argv != NULL)
      err = __argz_create (argv, &args, &argslen);
    if (!err && envp != NULL)
      err = __argz_create (envp, &env, &envlen);

    /* Load up the ports to give to the new program.
       Note the loop/switch below must parallel exactly to release refs.  */
    for (i = 0; i < _hurd_nports; ++i)
      {
	switch (i)
	  {
	  case INIT_PORT_AUTH:
	    ports[i] = auth;
	    continue;
	  case INIT_PORT_PROC:
	    ports[i] = proc;
	    continue;
	  case INIT_PORT_CRDIR:
	    if (flags & POSIX_SPAWN_RESETIDS)
	      {
		ports[i] = rcrdir;
		continue;
	      }
	    break;
	  case INIT_PORT_CWDIR:
	    if (flags & POSIX_SPAWN_RESETIDS)
	      {
		ports[i] = rcwdir;
		continue;
	      }
	    if (ccwdir != MACH_PORT_NULL)
	      {
		ports[i] = ccwdir;
		continue;
	      }
	    break;
	  }
	ports[i] = _hurd_port_get (&_hurd_ports[i], &ulink_ports[i]);
      }

    /* Finally, try executing the file we opened.  */
    if (!err)
      err = exec (execfile);
    __mach_port_deallocate (__mach_task_self (), execfile);

    if (err == ENOEXEC)
      {
	/* The file is accessible but it is not an executable file.
	   Invoke the shell to interpret it as a script.  */
	err = __argz_insert (&args, &argslen, args, _PATH_BSHELL);
	if (!err)
	  err = child_lookup (_PATH_BSHELL, O_EXEC, 0, &execfile);
	if (!err)
	  {
	    err = exec (execfile);
	    __mach_port_deallocate (__mach_task_self (), execfile);
	  }
      }

    /* Release the references just packed up in PORTS.
       This switch must always parallel the one above that fills PORTS.  */
    for (i = 0; i < _hurd_nports; ++i)
      {
	switch (i)
	  {
	  case INIT_PORT_AUTH:
	  case INIT_PORT_PROC:
	    continue;
	  case INIT_PORT_CRDIR:
	    if (flags & POSIX_SPAWN_RESETIDS)
	      continue;
	    break;
	  case INIT_PORT_CWDIR:
	    if (flags & POSIX_SPAWN_RESETIDS)
	      continue;
	    if (ccwdir != MACH_PORT_NULL)
	      continue;
	    break;
	  }
	_hurd_port_free (&_hurd_ports[i], &ulink_ports[i], ports[i]);
      }

    free (args);
    free (env);
  }

  /* We did it!  We have a child!  */
  if (pid != NULL)
    *pid = new_pid;

 out:
  /* Clean up all the references we are now holding.  */

  if (task != MACH_PORT_NULL)
    {
      if (err)
	/* We failed after creating the task, so kill it.  */
	__task_terminate (task);
      __mach_port_deallocate (__mach_task_self (), task);
    }
  __mach_port_deallocate (__mach_task_self (), auth);
  __mach_port_deallocate (__mach_task_self (), proc);
  if (ccwdir != MACH_PORT_NULL)
    __mach_port_deallocate (__mach_task_self (), ccwdir);
  if (rcrdir != MACH_PORT_NULL)
    __mach_port_deallocate (__mach_task_self (), rcrdir);
  if (rcwdir != MACH_PORT_NULL)
    __mach_port_deallocate (__mach_task_self (), rcwdir);

  if (ulink_dtable)
    /* Release references to the file descriptor ports.  */
    for (i = 0; i < dtablesize; ++i)
      if (dtable[i] != MACH_PORT_NULL)
	{
	  if (dtable_cells[i] == NULL)
	    __mach_port_deallocate (__mach_task_self (), dtable[i]);
	  else
	    _hurd_port_free (dtable_cells[i], &ulink_dtable[i], dtable[i]);
	}

  free (concat_name);

  if (err)
    /* This hack canonicalizes the error code that we return.  */
    err = (__hurd_fail (err), errno);

  return err;
}