1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
|
/* Complex exponential function. m68k fpu version
Copyright (C) 1997-2016 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Andreas Schwab <schwab@issan.informatik.uni-dortmund.de>
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Lesser General Public
License as published by the Free Software Foundation; either
version 2.1 of the License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Lesser General Public License for more details.
You should have received a copy of the GNU Lesser General Public
License along with the GNU C Library. If not, see
<http://www.gnu.org/licenses/>. */
#include <float.h>
#include <complex.h>
#include <math.h>
#include "mathimpl.h"
#define CONCATX(a,b) __CONCAT(a,b)
#define s(name) M_SUF (name)
#define m81(func) __m81_u(s(func))
CFLOAT
s(__cexp) (CFLOAT x)
{
CFLOAT retval;
unsigned long ix_cond;
ix_cond = __m81_test (__imag__ x);
if ((ix_cond & (__M81_COND_NAN|__M81_COND_INF)) == 0)
{
/* Imaginary part is finite. */
unsigned long rx_cond = __m81_test (__real__ x);
if ((rx_cond & (__M81_COND_NAN|__M81_COND_INF)) == 0)
{
const int t = (int) ((LDBL_MAX_EXP - 1) * M_LN2l);
long double sin_ix, cos_ix, exp_val;
__m81_u (__sincosl) (__imag__ x, &sin_ix, &cos_ix);
if (__real__ x > t)
{
long double exp_t = __m81_u(__ieee754_expl) (t);
__real__ x -= t;
sin_ix *= exp_t;
cos_ix *= exp_t;
if (__real__ x > t)
{
__real__ x -= t;
sin_ix *= exp_t;
cos_ix *= exp_t;
}
}
exp_val = __m81_u(__ieee754_expl) (__real__ x);
__real__ retval = exp_val * cos_ix;
if (ix_cond & __M81_COND_ZERO)
__imag__ retval = __imag__ x;
else
__imag__ retval = exp_val * sin_ix;
}
else
{
/* Compute the sign of the result. */
long double remainder, pi_2;
int quadrant;
if ((rx_cond & (__M81_COND_NAN|__M81_COND_NEG)) == __M81_COND_NEG)
__real__ retval = __imag__ retval = 0.0;
else
__real__ retval = __imag__ retval = __real__ x;
__asm ("fmovecr %#0,%0\n\tfscale%.w %#-1,%0" : "=f" (pi_2));
__asm ("fmod%.x %2,%0\n\tfmove%.l %/fpsr,%1"
: "=f" (remainder), "=dm" (quadrant)
: "f" (pi_2), "0" (__imag__ x));
quadrant = (quadrant >> 16) & 0x83;
if (quadrant & 0x80)
quadrant ^= 0x83;
switch (quadrant)
{
default:
break;
case 1:
__real__ retval = -__real__ retval;
break;
case 2:
__real__ retval = -__real__ retval;
case 3:
__imag__ retval = -__imag__ retval;
break;
}
if (ix_cond & __M81_COND_ZERO && (rx_cond & __M81_COND_NAN) == 0)
__imag__ retval = __imag__ x;
}
}
else
{
unsigned long rx_cond = __m81_test (__real__ x);
if (rx_cond & __M81_COND_INF)
{
/* Real part is infinite. */
if (rx_cond & __M81_COND_NEG)
{
__real__ retval = __imag__ retval = 0.0;
if (ix_cond & __M81_COND_NEG)
__imag__ retval = -__imag__ retval;
}
else
{
__real__ retval = __real__ x;
__imag__ retval = __imag__ x - __imag__ x;
}
}
else
__real__ retval = __imag__ retval = __imag__ x - __imag__ x;
}
return retval;
}
weak_alias (s(__cexp), s(cexp))
|