summary refs log tree commit diff
path: root/sysdeps/libm-ieee754/e_acoshl.c
blob: 7b7bea70544d83e9ddc5de29a9a7bab9b936d5bf (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
/* e_acoshl.c -- long double version of e_acosh.c.
 * Conversion to long double by Ulrich Drepper,
 * Cygnus Support, drepper@cygnus.com.
 */

/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice
 * is preserved.
 * ====================================================
 */

#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: $";
#endif

/* __ieee754_acoshl(x)
 * Method :
 *	Based on
 *		acoshl(x) = logl [ x + sqrtl(x*x-1) ]
 *	we have
 *		acoshl(x) := logl(x)+ln2,	if x is large; else
 *		acoshl(x) := logl(2x-1/(sqrtl(x*x-1)+x)) if x>2; else
 *		acoshl(x) := log1pl(t+sqrtl(2.0*t+t*t)); where t=x-1.
 *
 * Special cases:
 *	acoshl(x) is NaN with signal if x<1.
 *	acoshl(NaN) is NaN without signal.
 */

#include "math.h"
#include "math_private.h"

#ifdef __STDC__
static const long double
#else
static long double
#endif
one	= 1.0,
ln2	= 6.931471805599453094287e-01L; /* 0x3FFE, 0xB17217F7, 0xD1CF79AC */

#ifdef __STDC__
	long double __ieee754_acoshl(long double x)
#else
	long double __ieee754_acoshl(x)
	long double x;
#endif
{
	long double t;
	u_int32_t se,i0,i1;
	GET_LDOUBLE_WORDS(se,i0,i1,x);
	if(se<0x3fff) {			/* x < 1 */
	    return (x-x)/(x-x);
	} else if(se >=0x401b) {	/* x > 2**28 */
	    if(se >=0x7fff) {		/* x is inf of NaN */
	        return x+x;
	    } else
		return __ieee754_logl(x)+ln2;	/* acoshl(huge)=logl(2x) */
	} else if(((se-0x3fff)|i0|i1)==0) {
	    return 0.0;			/* acosh(1) = 0 */
	} else if (se > 0x4000) {	/* 2**28 > x > 2 */
	    t=x*x;
	    return __ieee754_logl(2.0*x-one/(x+__ieee754_sqrtl(t-one)));
	} else {			/* 1<x<2 */
	    t = x-one;
	    return __log1pl(t+__sqrtl(2.0*t+t*t));
	}
}