summary refs log tree commit diff
path: root/sysdeps/libm-ieee754/e_acosh.c
blob: 27c29cd8c9be2ca370bb9dc06b9221afd535e646 (plain) (blame)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
/* @(#)e_acosh.c 5.1 93/09/24 */
/*
 * ====================================================
 * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
 *
 * Developed at SunPro, a Sun Microsystems, Inc. business.
 * Permission to use, copy, modify, and distribute this
 * software is freely granted, provided that this notice 
 * is preserved.
 * ====================================================
 */

#if defined(LIBM_SCCS) && !defined(lint)
static char rcsid[] = "$NetBSD: e_acosh.c,v 1.9 1995/05/12 04:57:18 jtc Exp $";
#endif

/* __ieee754_acosh(x)
 * Method :
 *	Based on 
 *		acosh(x) = log [ x + sqrt(x*x-1) ]
 *	we have
 *		acosh(x) := log(x)+ln2,	if x is large; else
 *		acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
 *		acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
 *
 * Special cases:
 *	acosh(x) is NaN with signal if x<1.
 *	acosh(NaN) is NaN without signal.
 */

#include "math.h"
#include "math_private.h"

#ifdef __STDC__
static const double 
#else
static double 
#endif
one	= 1.0,
ln2	= 6.93147180559945286227e-01;  /* 0x3FE62E42, 0xFEFA39EF */

#ifdef __STDC__
	double __ieee754_acosh(double x)
#else
	double __ieee754_acosh(x)
	double x;
#endif
{	
	double t;
	int32_t hx;
	u_int32_t lx;
	EXTRACT_WORDS(hx,lx,x);
	if(hx<0x3ff00000) {		/* x < 1 */
	    return (x-x)/(x-x);
	} else if(hx >=0x41b00000) {	/* x > 2**28 */
	    if(hx >=0x7ff00000) {	/* x is inf of NaN */
	        return x+x;
	    } else 
		return __ieee754_log(x)+ln2;	/* acosh(huge)=log(2x) */
	} else if(((hx-0x3ff00000)|lx)==0) {
	    return 0.0;			/* acosh(1) = 0 */
	} else if (hx > 0x40000000) {	/* 2**28 > x > 2 */
	    t=x*x;
	    return __ieee754_log(2.0*x-one/(x+__ieee754_sqrt(t-one)));
	} else {			/* 1<x<2 */
	    t = x-one;
	    return __log1p(t+__sqrt(2.0*t+t*t));
	}
}