1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
|
/* ix87 specific implementation of pow function.
Copyright (C) 1996, 1997 Free Software Foundation, Inc.
This file is part of the GNU C Library.
Contributed by Ulrich Drepper <drepper@cygnus.com>, 1996.
The GNU C Library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License as
published by the Free Software Foundation; either version 2 of the
License, or (at your option) any later version.
The GNU C Library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with the GNU C Library; see the file COPYING.LIB. If not,
write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
Boston, MA 02111-1307, USA. */
#include <machine/asm.h>
#ifdef __ELF__
.section .rodata
#else
.text
#endif
.align ALIGNARG(4)
ASM_TYPE_DIRECTIVE(infinity,@object)
inf_zero:
infinity:
.byte 0, 0, 0, 0, 0, 0, 0xf0, 0x7f
ASM_SIZE_DIRECTIVE(infinity)
ASM_TYPE_DIRECTIVE(zero,@object)
zero: .double 0.0
ASM_SIZE_DIRECTIVE(zero)
ASM_TYPE_DIRECTIVE(minf_mzero,@object)
minf_mzero:
minfinity:
.byte 0, 0, 0, 0, 0, 0, 0xf0, 0xff
mzero:
.byte 0, 0, 0, 0, 0, 0, 0, 0x80
ASM_SIZE_DIRECTIVE(minf_mzero)
ASM_TYPE_DIRECTIVE(one,@object)
one: .double 1.0
ASM_SIZE_DIRECTIVE(one)
ASM_TYPE_DIRECTIVE(limit,@object)
limit: .double 0.29
ASM_SIZE_DIRECTIVE(limit)
ASM_TYPE_DIRECTIVE(nan,@object)
nan: .byte 0, 0, 0, 0, 0, 0, 0xff, 0x7f
ASM_SIZE_DIRECTIVE(nan)
#ifdef PIC
#define MO(op) op##@GOTOFF(%ecx)
#define MOX(op,x,f) op##@GOTOFF(%ecx,x,f)
#else
#define MO(op) op
#define MOX(op,x,f) op(,x,f)
#endif
.text
ENTRY(__ieee754_pow)
fldl 12(%esp) // y
fxam
#ifdef PIC
call 1f
1: popl %ecx
addl $_GLOBAL_OFFSET_TABLE_+[.-1b], %ecx
#endif
fnstsw
movb %ah, %dl
andb $0x45, %ah
cmpb $0x40, %ah // is y == 0 ?
je 11f
cmpb $0x05, %ah // is y == ±inf ?
je 12f
cmpb $0x01, %ah // is y == NaN ?
je 30f
fldl 4(%esp) // x : y
subl $8,%esp
fxam
fnstsw
movb %ah, %dh
andb $0x45, %ah
cmpb $0x40, %ah
je 20f // x is ±0
cmpb $0x05, %ah
je 15f // x is ±inf
fxch // y : x
/* First see whether `y' is a natural number. In this case we
can use a more precise algorithm. */
fld %st // y : y : x
fistpll (%esp) // y : x
fildll (%esp) // int(y) : y : x
fucomp %st(1) // y : x
fnstsw
sahf
jne 2f
/* OK, we have an integer value for y. */
popl %eax
popl %edx
orl $0, %edx
fstp %st(0) // x
jns 4f // y >= 0, jump
fdivrl MO(one) // 1/x (now referred to as x)
negl %eax
adcl $0, %edx
negl %edx
4: fldl MO(one) // 1 : x
fxch
6: shrdl $1, %edx, %eax
jnc 5f
fxch
fmul %st(1) // x : ST*x
fxch
5: fmul %st(0), %st // x*x : ST*x
movl %eax, %ecx
orl %edx, %ecx
jnz 6b
fstp %st(0) // ST*x
30: ret
.align ALIGNARG(4)
2: /* y is a real number. */
fxch // x : y
fldl MO(one) // 1.0 : x : y
fld %st(1) // x : 1.0 : x : y
fsub %st(1) // x-1 : 1.0 : x : y
fabs // |x-1| : 1.0 : x : y
fcompl MO(limit) // 1.0 : x : y
fnstsw
fxch // x : 1.0 : y
sahf
ja 7f
fsub %st(1) // x-1 : 1.0 : y
fyl2xp1 // log2(x) : y
jmp 8f
7: fyl2x // log2(x) : y
8: fmul %st(1) // y*log2(x) : y
fst %st(1) // y*log2(x) : y*log2(x)
frndint // int(y*log2(x)) : y*log2(x)
fsubr %st, %st(1) // int(y*log2(x)) : fract(y*log2(x))
fxch // fract(y*log2(x)) : int(y*log2(x))
f2xm1 // 2^fract(y*log2(x))-1 : int(y*log2(x))
faddl MO(one) // 2^fract(y*log2(x)) : int(y*log2(x))
fscale // 2^fract(y*log2(x))*2^int(y*log2(x)) : int(y*log2(x))
addl $8, %esp
fstp %st(1) // 2^fract(y*log2(x))*2^int(y*log2(x))
ret
// pow(x,±0) = 1
.align ALIGNARG(4)
11: fstp %st(0) // pop y
fldl MO(one)
ret
// y == ±inf
.align ALIGNARG(4)
12: fstp %st(0) // pop y
fldl 4(%esp) // x
fabs
fcompl MO(one) // < 1, == 1, or > 1
fnstsw
andb $0x45, %ah
cmpb $0x45, %ah
je 13f // jump if x is NaN
cmpb $0x40, %ah
je 14f // jump if |x| == 1
shlb $1, %ah
xorb %ah, %dl
andl $2, %edx
fldl MOX(inf_zero, %edx, 4)
ret
.align ALIGNARG(4)
14: fldl MO(nan)
faddl MO(zero) // raise invalid exception
ret
.align ALIGNARG(4)
13: fldl 4(%esp) // load x == NaN
ret
.align ALIGNARG(4)
// x is ±inf
15: fstp %st(0) // y
testb $2, %dh
jz 16f // jump if x == +inf
// We must find out whether y is an odd integer.
fld %st // y : y
fistpll (%esp) // y
fildll (%esp) // int(y) : y
fucompp // <empty>
fnstsw
sahf
jne 17f
// OK, the value is an integer, but is the number of bits small
// enough so that all are coming from the mantissa?
popl %eax
popl %edx
andb $1, %al
jz 18f // jump if not odd
movl %edx, %eax
orl %edx, %edx
jns 155f
negl %eax
155: cmpl $0x00200000, %eax
ja 18f // does not fit in mantissa bits
// It's an odd integer.
shrl $31, %edx
fldl MOX(minf_mzero, %edx, 8)
ret
.align ALIGNARG(4)
16: fcompl MO(zero)
addl $8, %esp
fnstsw
shrl $5, %eax
andl $8, %eax
fldl MOX(inf_zero, %eax, 1)
ret
.align ALIGNARG(4)
17: shll $30, %edx // sign bit for y in right position
addl $8, %esp
18: shrl $31, %edx
fldl MOX(inf_zero, %edx, 8)
ret
.align ALIGNARG(4)
// x is ±0
20: fstp %st(0) // y
testb $2, %dl
jz 21f // y > 0
// x is ±0 and y is < 0. We must find out whether y is an odd integer.
testb $2, %dh
jz 25f
fld %st // y : y
fistpll (%esp) // y
fildll (%esp) // int(y) : y
fucompp // <empty>
fnstsw
sahf
jne 26f
// OK, the value is an integer, but is the number of bits small
// enough so that all are coming from the mantissa?
popl %eax
popl %edx
andb $1, %al
jz 27f // jump if not odd
cmpl $0xffe00000, %edx
jbe 27f // does not fit in mantissa bits
// It's an odd integer.
// Raise divide-by-zero exception and get minus infinity value.
fldl MO(one)
fdivl MO(zero)
fchs
ret
25: fstp %st(0)
26: popl %eax
popl %edx
27: // Raise divide-by-zero exception and get infinity value.
fldl MO(one)
fdivl MO(zero)
ret
.align ALIGNARG(4)
// x is ±0 and y is > 0. We must find out whether y is an odd integer.
21: testb $2, %dh
jz 22f
fld %st // y : y
fistpll (%esp) // y
fildll (%esp) // int(y) : y
fucompp // <empty>
fnstsw
sahf
jne 23f
// OK, the value is an integer, but is the number of bits small
// enough so that all are coming from the mantissa?
popl %eax
popl %edx
andb $1, %al
jz 24f // jump if not odd
cmpl $0xffe00000, %edx
jae 24f // does not fit in mantissa bits
// It's an odd integer.
fldl MO(mzero)
ret
22: fstp %st(0)
23: popl %eax
popl %edx
24: fldl MO(zero)
ret
END(__ieee754_pow)
|